MASTERPHYS:KNIGHT'S PHYSICS ACCESS+WKB
4th Edition
ISBN: 9780135245033
Author: Knight
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 30, Problem 75EAP
The capacitor in FIGURE P30.75 is initially charged to , the capacitor is uncharged, and the switches are both open.
a. What is the maximum voltage to which you can charge the capacitor by the proper closing and opening of the two switches?
b. How would you do it? Describe the sequence in which you would close and open switches and the times at which you would do so. The first switch is closed at .
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
4. The circuit contains four parallel plate capacitors, all initially uncharged and with no dielectric material between their plates. A switch is closed to complete the circuit at time t=0, so current begins to flow at that time and we wait enough time for the capacitors to become (very close to) fully charged.
a. What is the equivalent capacitance of this circuit?
b. What is the charge stored on the 125 µF capacitor?
If we now insert a neoprene rubber dielectric into all of the capacitors, how will the answers change?
c. What is the equivalent capacitance of this circuit?
d. What is the charge stored on the 125 µF capacitor?
When the switch is closed in the figure below, the capacitor charges
with a characteristic time constant 71. On the other hand, when the
capacitor is fully charged and the switch is opened, the capacitor
discharges with a characteristic time constant T2. What is the ratio T1/T2?
R1
a
R2
A. R/(R + R)
B. (R2 + R2)/R1
C. R1/(R + R2)
D. (R1/R2)(1+ R1/R2)
E. 1
The switch in the circuit has been in position a for a long time, so the capacitor is
fully charged. The switch is changed to position b at t = 0.
a. What is the current in the circuit immediately after the switch is changed to b?
b. What is the current in the circuit 25 us later?
C.
What is the charge Q on the capacitor 25 µs later?
9.0 V
1.0 μF
10 Ω
Chapter 30 Solutions
MASTERPHYS:KNIGHT'S PHYSICS ACCESS+WKB
Ch. 30 - Prob. 1CQCh. 30 - You want to insert a loop of copper wire between...Ch. 30 - A vertical, rectangular loop of copper wire is...Ch. 30 - Does the loop of wire in FIGURE Q30.4 have a...Ch. 30 - s5. The two loops of wire in FIGURE Q30.5 are...Ch. 30 - FIGURE Q30.6 shows a bar magnet being pushed...Ch. 30 - A bar magnet is pushed toward a loop of wire as...Ch. 30 - FIGURE Q30.8 shows a bar magnet. a coil of wire,...Ch. 30 - Prob. 9CQCh. 30 - An inductor with a 2.0 A current stores energy. At...
Ch. 30 - Prob. 11CQCh. 30 - Prob. 12CQCh. 30 - Rank in order, from largest to smallest, the three...Ch. 30 - For the circuit of FIGURE Q30.14: a. What is the...Ch. 30 - The earth’s magnetic field strength is 5.0105T ....Ch. 30 - A potential difference of 0.050 V is developed...Ch. 30 - A 10 -cm-long wire is pulled along a U-shaped...Ch. 30 - What is the magnetic flux through the loop shown...Ch. 30 - FIGURE EX30.5 shows a 10cm10cm square bent at a 90...Ch. 30 - Prob. 6EAPCh. 30 - Prob. 7EAPCh. 30 - FIGURE EX30.8 shows a 2.0 -cm-diameter solenoid...Ch. 30 - Prob. 9EAPCh. 30 - 10. A solenoid is wound as shown in FIGURE...Ch. 30 - 11. The metal equilateral triangle in FIGURE...Ch. 30 - The current in the solenoid of FIGURE EX3O.12 is...Ch. 30 - The loop in FIGURE EX30.13 is being pushed into...Ch. 30 - FIGURE EX30.14 shows a 10-cm-diameter loop in...Ch. 30 - Prob. 15EAPCh. 30 - 16. A -turn coil of wire cm in diameter is in a...Ch. 30 - A 5.0 -cm-diameter coil has 20 turns and a...Ch. 30 - FIGURE EX30.18 shows the current as a function of...Ch. 30 - The magnetic field in FIGURE EX30.19 is decreasing...Ch. 30 - The magnetic field inside a -cm-diameter solenoid...Ch. 30 - Scientists studying an anomalous magnetic field...Ch. 30 - Prob. 22EAPCh. 30 - Prob. 23EAPCh. 30 - Prob. 24EAPCh. 30 - Prob. 25EAPCh. 30 - Prob. 26EAPCh. 30 - How much energy is stored in a -cm-diameter,...Ch. 30 - MRI (magnetic resonance imaging) is a medical...Ch. 30 - Prob. 29EAPCh. 30 - Prob. 30EAPCh. 30 - Prob. 31EAPCh. 30 - Prob. 32EAPCh. 30 - Prob. 33EAPCh. 30 - Prob. 34EAPCh. 30 - At t=0 s, the current in the circuit in FIGURE...Ch. 30 - The switch in FIGURE EX3O.36 has been open for a...Ch. 30 - Prob. 37EAPCh. 30 - Prob. 38EAPCh. 30 - Prob. 39EAPCh. 30 - Prob. 40EAPCh. 30 - A 10cm10cm square loop lies in the xy-plane. The...Ch. 30 - A spherical balloon with a volume of L is in a mT...Ch. 30 - Prob. 43EAPCh. 30 - Prob. 44EAPCh. 30 - Prob. 45EAPCh. 30 - FIGURE P30.46 shows a 4.0-cm-diameter loop with...Ch. 30 - Prob. 47EAPCh. 30 - Prob. 48EAPCh. 30 - Prob. 49EAPCh. 30 - Prob. 50EAPCh. 30 - Prob. 51EAPCh. 30 - Prob. 52EAPCh. 30 - Prob. 53EAPCh. 30 - Prob. 54EAPCh. 30 - Prob. 55EAPCh. 30 - Your camping buddy has an idea for a light to go...Ch. 30 - 57. The -wide, zero-resistance slide wire shown...Ch. 30 - ]58. You’ve decided to make the magnetic...Ch. 30 - FIGURE P30.59 shows a U-shaped conducting rail...Ch. 30 - Prob. 60EAPCh. 30 - Prob. 61EAPCh. 30 - Prob. 62EAPCh. 30 - Equation 30.26 is an expression for the induced...Ch. 30 - Prob. 64EAPCh. 30 - One possible concern with MRI (see Exercise 28) is...Ch. 30 - FIGURE P30.66 shows the current through a 10mH...Ch. 30 - Prob. 67EAPCh. 30 - Prob. 68EAPCh. 30 - Prob. 69EAPCh. 30 - Prob. 70EAPCh. 30 - An LC circuit is built with a inductor and an...Ch. 30 - Prob. 72EAPCh. 30 - For your final exam in electronics, you’re asked...Ch. 30 - The inductor in FIGURE P30.74 is a -cm-long, -cm-...Ch. 30 - The capacitor in FIGURE P30.75 is initially...Ch. 30 - The switch in FIGURE P30.76 has been open for a...Ch. 30 - 77. The switch in FIGURE P30.77 has been open for...Ch. 30 - Prob. 78EAPCh. 30 - Prob. 79EAPCh. 30 - Prob. 80EAPCh. 30 - In recent years it has been possible to buy a 1.0F...Ch. 30 - Prob. 82EAPCh. 30 - Prob. 83EAPCh. 30 - Prob. 84EAPCh. 30 - A 2.0 -cm-diameter solenoid is wrapped with 1000...Ch. 30 - High-frequency signals are often transmitted along...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The switch in Figure P27.51a closes when Vc23Vand opens when Vc13V. The ideal voltmeter reads a potential difference as plotted in Figure P27.51b. What is the period T of the waveform in terms of R1, R2, and C? Figure P27.51arrow_forward(a) What is the average power output of a heart defibrillator that dissipates 400 J of energy in 10.0 ms? (b) Considering the high-power output, why doesn’t the defibrillator produce serious bums?arrow_forwardThe circuit shown in Figure P28.78 is set up in the laboratory to measure an unknown capacitance C in series with a resistance R = 10.0 M powered by a battery whose emf is 6.19 V. The data given in the table are the measured voltages across the capacitor as a function of lime, where t = 0 represents the instant at which the switch is thrown to position b. (a) Construct a graph of In (/v) versus I and perform a linear least-squares fit to the data, (b) From the slope of your graph, obtain a value for the time constant of the circuit and a value for the capacitance. v(V) t(s) In (/v) 6.19 0 5.56 4.87 4.93 11.1 4.34 19.4 3.72 30.8 3.09 46.6 2.47 67.3 1.83 102.2arrow_forward
- 1. The 300-µF capacitor in the figure on the right is initially charged to 100 V, the 1200-µF capacitor is uncharged, and the switches are both open. a. What is the maximum voltage to which you can charge the 1200-µF capacitor by the proper closing and opening of the two switches? b. How would you do it? Describe the sequence in which you would close and open switches and the times at which you would do so. The first switch is closed at t = 0. 300 µF: 5.3 H 1200 μFarrow_forwardIn the circuit shown in the figure, both capacitors are initially charged to 45.0 V.a. How long after closing the switch S will the potential across each capacitor be reduced to10.0 V?b. What will be the current at that time?arrow_forwardd. At the instant the capacitor is charged to 87% of its maximum charge, the switch S is flipped from to position b. What is the current through R2 immediately after the switch is flipped to position b?arrow_forward
- Tina the ballarina has this RC circuit she made for school help her figure out the following a. What is the time constant for the RC circuit? b. After how long does the capacitor become 80% charged? c. How much current flows in the R3 resistor at this time? + S I R₁ R₂ C R3 www.h R₁=100 kn R₁-200 kn R₂=300kn C=5.00 μF {=9.00V THE CAPACITOR IS INNITIALY CHARGED WHEN THE SWITCH IS CLOSEDarrow_forwardA capacitor has a potential difference of V0 = 375 V between the plates. When the switch S is closed, it is discharged through a resistor of R = 14.5 kΩ. At time t = 10 seconds after the switch is closed, the potential difference between the capacitor plates equals VC = 1.0 V. a. Calculate the capacitance of the capacitor in farads. b. Calculate the maximum current Imax that passes through the resistor, in Amperes. c. Calculate the current I at time t, in Amperes.arrow_forwardQ77. Consider the RC circuit depicted below, which contains R1 = 100 kn, R2 = 200 kn, R3 = 300 kn, C = 5.00 µF, and E= 9.00 V. At t = 0, the capacitor is uncharged and the switch is closed. The following questions pertain to the behavior of the circuit. A. Determine the time constant of the RC circuit. B. At what time does the capacitor reach 80% of its maximum charge? C. What is the current flowing through the R3 resistor at that time? R3 www. S 20 ww wwwarrow_forward
- e12q8 Hi, I need help visualizing graphs for this diagram: Abasic switch, two voltmeters and an ammeter. Initially the capacitor is either partially or fully charged, and the switch is open. switch is moved to position "b" allowing the capacitor start discharging. 1. Draw graph that represents the current measured with the ammeter as a function of time: 2. Draw graph that represents the magnitude of the voltage measured across the capacitor by the voltmeter labeled VC 3. Draw graoh that represents the magnitude of the voltage measured across the resistor by the voltmeter labeled VR Thank you!arrow_forwardA circuit has a voltage source of 9 V, a capacitor of capacitance 1 × 10 –3 F, and a resistor of 60 Ω . a. What is the time constant of this circuit? b. What is the maximum charge on the capacitor? c. The circuit is switched on at t = 0 seconds. How much charge is on the capacitor at t = 0.1 seconds? d. At what time does the capacitor have half of its maximum charge? e. At what time does the capacitor have 90% of its maximum charge? f. After the capacitor is completely charged, you disconnect the circuit and the capacitor starts discharging. How much charge is on the capacitor after 2 milliseconds? g. How long does it take for the capacitor to lose 99% of its charge?arrow_forwardA 20.0 ohm resistor and a 25.0 ohm resistor in parallel are connected to a 120-V dc source. A. What is (are) the current(s) through the resistors? current through the 20.0 ohm resistor: __ A current through the 25.0 ohm resistor: __ A B. What is the voltage drop across each resistor? Voltage drop across the 20.0 ohm resistor: __V Voltage drop across the 25.0 ohm resistor: __Varrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY