
Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 44QLP
To determine
If the materials to be welded are preheated, is the likely hood for porosity increased or decreased? Explain.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
determine the direction and magnitude of angular velocity ω3 of link CD in the four-bar linkage using the relative velocity graphical method
Four-bar linkage mechanism, AB=40mm, BC=60mm, CD=70mm, AD=80mm, =60°, w1=10rad/s. Determine the direction and
magnitude of w3 using relative motion graphical method.
A
B
2
3
77777
477777
Four-bar linkage mechanism, AB=40mm, BC=60mm, CD=70mm, AD=80mm, =60°, w1=10rad/s. Determine the direction and
magnitude of w3 using relative motion graphical method.
A
B
2
3
77777
477777
Chapter 30 Solutions
Manufacturing Engineering & Technology
Ch. 30 - Describe fusion as it relates to welding...Ch. 30 - Explain the features of neutralizing, reducing,...Ch. 30 - What is stick welding?Ch. 30 - Explain the basic principles of arc-welding...Ch. 30 - Why is shielded metal-arc welding a commonly...Ch. 30 - What keeps the weld bead on a steel surface...Ch. 30 - Describe the functions and characteristics of...Ch. 30 - What are the similarities and differences between...Ch. 30 - What properties are useful for a shielding gas?Ch. 30 - What are the advantages to thermit welding?
Ch. 30 - Explain where the energy is obtained in...Ch. 30 - Explain how cutting takes place when an...Ch. 30 - What is the purpose of flux? Why is it not needed...Ch. 30 - What is meant by weld quality? Discuss the...Ch. 30 - How is weldability defined?Ch. 30 - Why are welding electrodes generally coated?Ch. 30 - Describe the common types of discontinuities...Ch. 30 - Prob. 18RQCh. 30 - Explain why hydrogen welding can be used to...Ch. 30 - Prob. 20RQCh. 30 - Prob. 21QLPCh. 30 - It has been noted that heat transfer in gas-metal...Ch. 30 - Explain why some joints may have to be...Ch. 30 - Describe the role of filler metals in welding.Ch. 30 - List the processes that can be performed with...Ch. 30 - What is the effect of the thermal conductivity of...Ch. 30 - Describe the differences between oxyfuel-gas...Ch. 30 - Could you use oxyfuel-gas cutting for a stack of...Ch. 30 - What are the advantages of electron-beam and...Ch. 30 - Describe the methods by which discontinuities...Ch. 30 - Explain the significance of the stiffness of the...Ch. 30 - Prob. 32QLPCh. 30 - Which of the processes described in this chapter...Ch. 30 - Prob. 34QLPCh. 30 - Prob. 35QLPCh. 30 - Comment on the factors involved in electrode...Ch. 30 - Prob. 38QLPCh. 30 - Prob. 39QLPCh. 30 - Prob. 40QLPCh. 30 - Prob. 41QLPCh. 30 - What is weld spatter? What are its sources? How...Ch. 30 - Describe your observations concerning Fig. 30.20.Ch. 30 - Prob. 44QLPCh. 30 - Plot the hardness in Fig. 30.20d as a function of...Ch. 30 - A welding operation will take place on carbon...Ch. 30 - In Fig. 30.26b, assume that most of the top...Ch. 30 - A welding operation takes place on an...Ch. 30 - An arc welding operation is taking place on carbon...Ch. 30 - Comment on workpiece size and shape limitations...Ch. 30 - Arc blow is a phenomenon where the magnetic...Ch. 30 - Review the types of welded joints shown in Fig....Ch. 30 - Comment on the design guidelines given in...Ch. 30 - Prob. 55SDPCh. 30 - Prob. 56SDPCh. 30 - Make a list of welding processes that are suitable...Ch. 30 - Prob. 58SDPCh. 30 - Prob. 59SDPCh. 30 - Review the poor and good joint designs shown...Ch. 30 - In building large ships, there is a need to weld...Ch. 30 - Prob. 62SDPCh. 30 - Comment on whether there are common factors...Ch. 30 - Prob. 64SDPCh. 30 - Lattice booms for cranes are constructed from...Ch. 30 - A common practice in repairing expensive broken...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The evaporator of a vapor compression refrigeration cycle utilizing R-123 as the refrigerant isbeing used to chill water. The evaporator is a shell and tube heat exchanger with the water flowingthrough the tubes. The water enters the heat exchanger at a temperature of 54°F. The approachtemperature difference of the evaporator is 3°R. The evaporating pressure of the refrigeration cycleis 4.8 psia and the condensing pressure is 75 psia. The refrigerant is flowing through the cycle witha flow rate of 18,000 lbm/hr. The R-123 leaves the evaporator as a saturated vapor and leaves thecondenser as a saturated liquid. Determine the following:a. The outlet temperature of the chilled waterb. The volumetric flow rate of the chilled water (gpm)c. The UA product of the evaporator (Btu/h-°F)d. The heat transfer rate between the refrigerant and the water (tons)arrow_forward(Read image) (Answer given)arrow_forwardProblem (17): water flowing in an open channel of a rectangular cross-section with width (b) transitions from a mild slope to a steep slope (i.e., from subcritical to supercritical flow) with normal water depths of (y₁) and (y2), respectively. Given the values of y₁ [m], y₂ [m], and b [m], calculate the discharge in the channel (Q) in [Lit/s]. Givens: y1 = 4.112 m y2 = 0.387 m b = 0.942 m Answers: ( 1 ) 1880.186 lit/s ( 2 ) 4042.945 lit/s ( 3 ) 2553.11 lit/s ( 4 ) 3130.448 lit/sarrow_forward
- Problem (14): A pump is being used to lift water from an underground tank through a pipe of diameter (d) at discharge (Q). The total head loss until the pump entrance can be calculated as (h₁ = K[V²/2g]), h where (V) is the flow velocity in the pipe. The elevation difference between the pump and tank surface is (h). Given the values of h [cm], d [cm], and K [-], calculate the maximum discharge Q [Lit/s] beyond which cavitation would take place at the pump entrance. Assume Turbulent flow conditions. Givens: h = 120.31 cm d = 14.455 cm K = 8.976 Q Answers: (1) 94.917 lit/s (2) 49.048 lit/s ( 3 ) 80.722 lit/s 68.588 lit/s 4arrow_forwardProblem (13): A pump is being used to lift water from the bottom tank to the top tank in a galvanized iron pipe at a discharge (Q). The length and diameter of the pipe section from the bottom tank to the pump are (L₁) and (d₁), respectively. The length and diameter of the pipe section from the pump to the top tank are (L2) and (d2), respectively. Given the values of Q [L/s], L₁ [m], d₁ [m], L₂ [m], d₂ [m], calculate total head loss due to friction (i.e., major loss) in the pipe (hmajor-loss) in [cm]. Givens: L₁,d₁ Pump L₂,d2 오 0.533 lit/s L1 = 6920.729 m d1 = 1.065 m L2 = 70.946 m d2 0.072 m Answers: (1) 3.069 cm (2) 3.914 cm ( 3 ) 2.519 cm ( 4 ) 1.855 cm TABLE 8.1 Equivalent Roughness for New Pipes Pipe Riveted steel Concrete Wood stave Cast iron Galvanized iron Equivalent Roughness, & Feet Millimeters 0.003-0.03 0.9-9.0 0.001-0.01 0.3-3.0 0.0006-0.003 0.18-0.9 0.00085 0.26 0.0005 0.15 0.045 0.000005 0.0015 0.0 (smooth) 0.0 (smooth) Commercial steel or wrought iron 0.00015 Drawn…arrow_forwardThe flow rate is 12.275 Liters/s and the diameter is 6.266 cm.arrow_forward
- An experimental setup is being built to study the flow in a large water main (i.e., a large pipe). The water main is expected to convey a discharge (Qp). The experimental tube will be built at a length scale of 1/20 of the actual water main. After building the experimental setup, the pressure drop per unit length in the model tube (APm/Lm) is measured. Problem (20): Given the value of APm/Lm [kPa/m], and assuming pressure coefficient similitude, calculate the drop in the pressure per unit length of the water main (APP/Lp) in [Pa/m]. Givens: AP M/L m = 590.637 kPa/m meen Answers: ( 1 ) 59.369 Pa/m ( 2 ) 73.83 Pa/m (3) 95.443 Pa/m ( 4 ) 44.444 Pa/m *******arrow_forwardFind the reaction force in y if Ain = 0.169 m^2, Aout = 0.143 m^2, p_in = 0.552 atm, Q = 0.367 m^3/s, α = 31.72 degrees. The pipe is flat on the ground so do not factor in weight of the pipe and fluid.arrow_forwardFind the reaction force in x if Ain = 0.301 m^2, Aout = 0.177 m^2, p_in = 1.338 atm, Q = 0.669 m^3/s, and α = 37.183 degreesarrow_forward
- Problem 5: Three-Force Equilibrium A structural connection at point O is in equilibrium under the action of three forces. • • . Member A applies a force of 9 kN vertically upward along the y-axis. Member B applies an unknown force F at the angle shown. Member C applies an unknown force T along its length at an angle shown. Determine the magnitudes of forces F and T required for equilibrium, assuming 0 = 90° y 9 kN Aarrow_forwardProblem 19: Determine the force in members HG, HE, and DE of the truss, and state if the members are in tension or compression. 4 ft K J I H G B C D E F -3 ft -3 ft 3 ft 3 ft 3 ft- 1500 lb 1500 lb 1500 lb 1500 lb 1500 lbarrow_forwardProblem 14: Determine the reactions at the pin A, and the tension in cord. Neglect the thickness of the beam. F1=26kN F2 13 12 80° -2m 3marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning

Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Metal Joining Process-Welding, Brazing and Soldering; Author: Toc H Kochi;https://www.youtube.com/watch?v=PPT5_fDSzGY;License: Standard YouTube License, CC-BY