
Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Question
Chapter 30, Problem 21QLP
To determine
Explain the reasons that so many different weldingprocesses have been developed over the years.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Complete the following problems. Show your work/calculations, save as.pdf and upload to the
assignment in Blackboard.
1. What are the x and y dimensions for the center position of holes 1,2, and 3 in the part shown in
Figure 26.2 (below)?
6.0000
7118
Zero
reference
point
1.0005
1.0000
1.252
Bore
C' bore
1.250
6.0000
.7118
0.2180 deep
(3 holes)
2.6563 1.9445
3.000 diam. slot
0.3000 deep.
0.3000 wide
2.6563
1.9445
Complete the following problems. Show your work/calculations, save as.pdf and upload to the
assignment in Blackboard.
missing information to present a completed program. (Hint: You may have to look up geometry
for the center drill and standard 0.5000 in twist drill to know the required depth to drill).
1. What are the x and y dimensions for the center position of holes 1,2, and 3 in the part shown in
Figure 26.2 (below)?
6.0000
Zero
reference
point
7118
1.0005
1.0000
1.252
Bore
6.0000
.7118
Cbore
0.2180 deep
(3 holes)
2.6563 1.9445
Figure 26.2
026022 (8lot and Drill Part)
(Setup Instructions---
(UNITS: Inches
(WORKPIECE NAT'L SAE 1020 STEEL
(Workpiece: 3.25 x 2.00 x0.75 in. Plate
(PRZ Location 054:
'
XY 0.0 - Upper Left of Fixture
TOP OF PART 2-0
(Tool List
( T02 0.500 IN 4 FLUTE FLAT END MILL
#4 CENTER DRILL
Dashed line indicates-
corner of original stock
( T04
T02
3.000 diam. slot
0.3000 deep.
0.3000 wide
Intended toolpath-tangent-
arc entry and exit sized to
programmer's judgment…
A program to make the part depicted in Figure 26.A has been created, presented in figure 26.B, but some information still needs to be filled in. Compute the tool locations, depths, and other missing information to present a completed program. (Hint: You may have to look up geometry for the center drill and standard 0.5000 in twist drill to know the required depth to drill).
Chapter 30 Solutions
Manufacturing Engineering & Technology
Ch. 30 - Describe fusion as it relates to welding...Ch. 30 - Explain the features of neutralizing, reducing,...Ch. 30 - What is stick welding?Ch. 30 - Explain the basic principles of arc-welding...Ch. 30 - Why is shielded metal-arc welding a commonly...Ch. 30 - What keeps the weld bead on a steel surface...Ch. 30 - Describe the functions and characteristics of...Ch. 30 - What are the similarities and differences between...Ch. 30 - What properties are useful for a shielding gas?Ch. 30 - What are the advantages to thermit welding?
Ch. 30 - Explain where the energy is obtained in...Ch. 30 - Explain how cutting takes place when an...Ch. 30 - What is the purpose of flux? Why is it not needed...Ch. 30 - What is meant by weld quality? Discuss the...Ch. 30 - How is weldability defined?Ch. 30 - Why are welding electrodes generally coated?Ch. 30 - Describe the common types of discontinuities...Ch. 30 - Prob. 18RQCh. 30 - Explain why hydrogen welding can be used to...Ch. 30 - Prob. 20RQCh. 30 - Prob. 21QLPCh. 30 - It has been noted that heat transfer in gas-metal...Ch. 30 - Explain why some joints may have to be...Ch. 30 - Describe the role of filler metals in welding.Ch. 30 - List the processes that can be performed with...Ch. 30 - What is the effect of the thermal conductivity of...Ch. 30 - Describe the differences between oxyfuel-gas...Ch. 30 - Could you use oxyfuel-gas cutting for a stack of...Ch. 30 - What are the advantages of electron-beam and...Ch. 30 - Describe the methods by which discontinuities...Ch. 30 - Explain the significance of the stiffness of the...Ch. 30 - Prob. 32QLPCh. 30 - Which of the processes described in this chapter...Ch. 30 - Prob. 34QLPCh. 30 - Prob. 35QLPCh. 30 - Comment on the factors involved in electrode...Ch. 30 - Prob. 38QLPCh. 30 - Prob. 39QLPCh. 30 - Prob. 40QLPCh. 30 - Prob. 41QLPCh. 30 - What is weld spatter? What are its sources? How...Ch. 30 - Describe your observations concerning Fig. 30.20.Ch. 30 - Prob. 44QLPCh. 30 - Plot the hardness in Fig. 30.20d as a function of...Ch. 30 - A welding operation will take place on carbon...Ch. 30 - In Fig. 30.26b, assume that most of the top...Ch. 30 - A welding operation takes place on an...Ch. 30 - An arc welding operation is taking place on carbon...Ch. 30 - Comment on workpiece size and shape limitations...Ch. 30 - Arc blow is a phenomenon where the magnetic...Ch. 30 - Review the types of welded joints shown in Fig....Ch. 30 - Comment on the design guidelines given in...Ch. 30 - Prob. 55SDPCh. 30 - Prob. 56SDPCh. 30 - Make a list of welding processes that are suitable...Ch. 30 - Prob. 58SDPCh. 30 - Prob. 59SDPCh. 30 - Review the poor and good joint designs shown...Ch. 30 - In building large ships, there is a need to weld...Ch. 30 - Prob. 62SDPCh. 30 - Comment on whether there are common factors...Ch. 30 - Prob. 64SDPCh. 30 - Lattice booms for cranes are constructed from...Ch. 30 - A common practice in repairing expensive broken...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- We consider a laminar flow induced by an impulsively started infinite flat plate. The y-axis is normal to the plate. The x- and z-axes form a plane parallel to the plate. The plate is defined by y = 0. For time t <0, the plate and the flow are at rest. For t≥0, the velocity of the plate is parallel to the 2-coordinate; its value is constant and equal to uw. At infinity, the flow is at rest. The flow induced by the motion of the plate is independent of z. (a) From the continuity equation, show that v=0 everywhere in the flow and the resulting momentum equation is მu Ət Note that this equation has the form of a diffusion equation (the same form as the heat equation). (b) We introduce the new variables T, Y and U such that T=kt, Y=k/2y, U = u where k is an arbitrary constant. In the new system of variables, the solution is U(Y,T). The solution U(Y,T) is expressed by a function of Y and T and the solution u(y, t) is expressed by a function of y and t. Show that the functions are identical.…arrow_forwardPart A: Suppose you wanted to drill a 1.5 in diameter hole through a piece of 1020 cold-rolled steel that is 2 in thick, using an HSS twist drill. What values if feed and cutting speed will you specify, along with an appropriate allowance? Part B: How much time will be required to drill the hole in the previous problem using the HSS drill?arrow_forward1.1 m 1.3 m B 60-mm diameter Brass 40-mm diameter Aluminum PROBLEM 2.52 - A rod consisting of two cylindrical portions AB and BC is restrained at both ends. Portion AB is made of brass (E₁ = 105 GPa, α = 20.9×10°/°C) and portion BC is made of aluminum (Ę₁ =72 GPa, α = 23.9×10/°C). Knowing that the rod is initially unstressed, determine (a) the normal stresses induced in portions AB and BC by a temperature rise of 42°C, (b) the corresponding deflection of point B.arrow_forward
- 30 mm D = 40 MPa -30 mm B C 80 MPa PROBLEM 2.69 A 30-mm square was scribed on the side of a large steel pressure vessel. After pressurization, the biaxial stress condition at the square is as shown. For E = 200 GPa and v=0.30, determine the change in length of (a) side AB, (b) side BC, (c) diagnonal AC.arrow_forwardPlease solve in detail this problem thank youarrow_forward0,5 mm 450 mm 350 mm Bronze A = 1500 mm² E = 105 GPa प 21.6 × 10-PC Aluminum A = 1800 mm² £ = 73 GPa = a 23.2 × 10-PC PROBLEM 2.58 Knowing that a 0.5-mm gap exists when the temperature is 24°C, determine (a) the temperature at which the normal stress in the aluminum bar will be equal to -75 MPa, (b) the corresponding exact length of the aluminum bar.arrow_forward
- 0.5 mm 450 mm -350 mm Bronze Aluminum A 1500 mm² A 1800 mm² E 105 GPa E 73 GPa K = 21.6 X 10 G < = 23.2 × 10-G PROBLEM 2.59 Determine (a) the compressive force in the bars shown after a temperature rise of 82°C, (b) the corresponding change in length of the bronze bar.arrow_forwardThe truss shown below sits on a roller at A and a pin at E. Determine the magnitudes of the forces in truss members GH, GB, BC and GC. State whether they are in tension or compression or are zero force members.arrow_forwardA weight (W) hangs from a pulley at B that is part of a support frame. Calculate the maximum possible mass of the weight if the maximum permissible moment reaction at the fixed support is 100 Nm. Note that a frictionless pin in a slot is located at C.arrow_forward
- It is the middle of a winter snowstorm. Sally and Jin take shelter under an overhang. The loading of the snow on top of the overhang is shown in the figure below. The overhang is attached to the wall at points A and B with pin supports. Another pin is at C. Determine the reactions of the pin supports at A and B. Express them in Cartesian vector form.arrow_forwardRecall that the CWH equation involves two important assumptions. Let us investigate how these assumptions affect the accuracy of state trajectories under the control inputs optimized in (a) and (b). (c.1): Discuss the assumptions about the chief and deputy orbits that are necessary for deriving CWH.arrow_forwardPROBLEM 2.50 1.8 m The concrete post (E-25 GPa and a = 9.9 x 10°/°C) is reinforced with six steel bars, each of 22-mm diameter (E, = 200 GPa and a, = 11.7 x 10°/°C). Determine the normal stresses induced in the steel and in the concrete by a temperature rise of 35°C. 6c " 0.391 MPa 240 mm 240 mm 6₁ = -9.47 MPaarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning

Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Differences between Temporary Joining and Permanent Joining.; Author: Academic Gain Tutorials;https://www.youtube.com/watch?v=PTr8QZhgXyg;License: Standard Youtube License