Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
9th Edition
ISBN: 9781305266292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 30, Problem 34P
An infinite sheet of current lying in the yz plane carries a surface current of linear density Js. The current is in the positive z direction, and Js represents the current per unit length measured along the y axis. Figure P30.34 is an edge view of the sheet. Prove that the magnetic field near the sheet is parallel to the sheet and perpendicular to the current direction, with magnitude μ0Js/2.
Figure P30.34
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3.2.9.ss
To solve problems, you will need to know the formula and orientation of the magnetic field with respect to the current.
The formula, B=u0I/2piR, describes the magnetic field B at a distance R from a straight wire carrying current I. u0= 4π*10-7 N/A2 and is called the permeability of free space. Magnetic field is in the units of Tesla (T) and has direction.
The field lines "curl" around the wire on a plane perpendicular to the wire as shown below. The direction of this magnetic field "curl" is in the direction of [ans1]
29.3.3 demo.JPG 29.3.3a.png
Group of answer choices
your curled fingers when your right thumb points along the current direction
the plane of the wire that your fingers point to
your thumb when your fingers of either hand are curled around the wire
the opposing induced field produced by the current
An electron moves in a straight line at speed 250 m/s along the positive y-axis
through uniform electric and magnetic fields. The magnetic field is directed into
the page and has magnitude 2 T. Neglect gravity. The mass of the electron is 9.1 x
10³1 kg.
a. What is the electric field (specify both magnitude and direction)?
b. Now imagine the electric field has been turned off. What will be the radius
of the electron's subsequent path?
Chapter 30 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
Ch. 30.1 - Consider the magnetic field due to the current in...Ch. 30.2 - Prob. 30.2QQCh. 30.3 - Prob. 30.3QQCh. 30.3 - Prob. 30.4QQCh. 30.4 - Consider a solenoid that is very long compared...Ch. 30 - Prob. 1OQCh. 30 - Prob. 2OQCh. 30 - Prob. 3OQCh. 30 - Prob. 4OQCh. 30 - Prob. 5OQ
Ch. 30 - A long, vertical, metallic wire carries downward...Ch. 30 - Suppose you are facing a tall makeup mirror on a...Ch. 30 - Prob. 8OQCh. 30 - Prob. 9OQCh. 30 - Consider the two parallel wires carrying currents...Ch. 30 - Prob. 11OQCh. 30 - A long solenoid with closely spaced turns carries...Ch. 30 - Prob. 13OQCh. 30 - Prob. 14OQCh. 30 - Prob. 15OQCh. 30 - Prob. 1CQCh. 30 - Prob. 2CQCh. 30 - Prob. 3CQCh. 30 - A hollow copper tube carries a current along its...Ch. 30 - Prob. 5CQCh. 30 - Prob. 6CQCh. 30 - Prob. 7CQCh. 30 - Prob. 8CQCh. 30 - Prob. 9CQCh. 30 - Prob. 10CQCh. 30 - Prob. 11CQCh. 30 - Prob. 12CQCh. 30 - Prob. 1PCh. 30 - Prob. 2PCh. 30 - Prob. 3PCh. 30 - Calculate the magnitude of the magnetic field at a...Ch. 30 - Prob. 5PCh. 30 - In Niels Bohrs 1913 model of the hydrogen atom, an...Ch. 30 - Prob. 7PCh. 30 - Prob. 8PCh. 30 - Prob. 9PCh. 30 - Prob. 10PCh. 30 - Prob. 11PCh. 30 - Consider a flat, circular current loop of radius R...Ch. 30 - Prob. 13PCh. 30 - One long wire carries current 30.0 A to the left...Ch. 30 - Prob. 15PCh. 30 - Prob. 16PCh. 30 - Prob. 17PCh. 30 - Prob. 18PCh. 30 - Prob. 19PCh. 30 - Prob. 20PCh. 30 - Prob. 21PCh. 30 - Prob. 22PCh. 30 - Prob. 23PCh. 30 - Prob. 24PCh. 30 - Prob. 25PCh. 30 - Prob. 26PCh. 30 - Prob. 27PCh. 30 - Why is the following situation impossible? Two...Ch. 30 - Prob. 29PCh. 30 - Prob. 30PCh. 30 - Prob. 31PCh. 30 - The magnetic coils of a tokamak fusion reactor are...Ch. 30 - Prob. 33PCh. 30 - An infinite sheet of current lying in the yz plane...Ch. 30 - Prob. 35PCh. 30 - A packed bundle of 100 long, straight, insulated...Ch. 30 - Prob. 37PCh. 30 - Prob. 38PCh. 30 - Prob. 39PCh. 30 - Prob. 40PCh. 30 - A long solenoid that has 1 000 turns uniformly...Ch. 30 - Prob. 42PCh. 30 - Prob. 43PCh. 30 - Prob. 44PCh. 30 - Prob. 45PCh. 30 - Prob. 46PCh. 30 - A cube of edge length l = 2.50 cm is positioned as...Ch. 30 - Prob. 48PCh. 30 - Prob. 49PCh. 30 - Prob. 50PCh. 30 - Prob. 51APCh. 30 - Prob. 52APCh. 30 - Prob. 53APCh. 30 - Why is the following situation impossible? The...Ch. 30 - Prob. 55APCh. 30 - Prob. 56APCh. 30 - Prob. 57APCh. 30 - Prob. 58APCh. 30 - A very large parallel-plate capacitor has uniform...Ch. 30 - Prob. 60APCh. 30 - Prob. 61APCh. 30 - Prob. 62APCh. 30 - Prob. 63APCh. 30 - Prob. 64APCh. 30 - Prob. 65APCh. 30 - Prob. 66APCh. 30 - Prob. 67APCh. 30 - Prob. 68APCh. 30 - Prob. 69CPCh. 30 - Prob. 70CPCh. 30 - Prob. 71CPCh. 30 - Prob. 72CPCh. 30 - Prob. 73CPCh. 30 - Prob. 74CPCh. 30 - Prob. 75CPCh. 30 - Prob. 76CPCh. 30 - Prob. 77CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Figure P30.10 shows a circular current-carrying wire. Using the coordinate system indicated (with the z axis out of the page), state the direction of the magnetic field at points A and B.arrow_forwardDetermine the initial direction of the deflection of charged particles as they enter the magnetic fields as shown in Figure P22.2. Figure P22.2.arrow_forwardA circular coil 15.0 cm in radius and composed of 145 tightly wound turns carries a current of 2.50 A in the counterclockwise direction, where the plane of the coil makes an angle of 15.0 with the y axis (Fig. P30.73). The coil is free to rotate about the z axis and is placed in a region with a uniform magnetic field given by B=1.35jT. a. What is the magnitude of the magnetic torque on the coil? b. In what direction will the coil rotate? FIGURE P30.73arrow_forward
- A toroid has a major radius R and a minor radius r and is tightly wound with N turns of wire on a hollow cardboard torus. Figure P31.6 shows half of this toroid, allowing us to see its cross section. If R r, the magnetic field in the region enclosed by the wire is essentially the same as the magnetic field of a solenoid that has been bent into a large circle of radius R. Modeling the field as the uniform field of a long solenoid, show that the inductance of such a toroid is approximately L=120N2r2R Figure P31.6arrow_forwardFor both sketches in Figure P30.56, there is a 3.54-A current, a magnetic field strength B 0.650 T. and the angle is 32.0. Find the magnetic force per unit length (magnitude and direction) exerted on the current-carrying conductor in both cases.arrow_forwardAn electron in a TV CRT moves with a speed of 6.0107 m/s, in a direction perpendicular to Earth's field, which has a strength of 5.0105 T. (a) What strength electric field must be applied perpendicular to the Earth’s field to make the election moves in a straight line? (b) If this is done between plates separated by 1.00 cm, what is the voltage applied? (Note that TVs are usually surrounded by a ferromagnetic material to shield against external magnetic fields and avoid the need for such a collection,)arrow_forward
- The Hall effect finds important application in the electronics industry. It is used to find the sign and density of the carriers of electric current in semiconductor chips. The arrangement is shown in Figure P22.66. A semiconducting block of thickness t and width d carries a current I in the x direction. A uniform magnetic field B is applied in the y direction. If the charge carriers are positive, the magnetic force deflects them in the z direction. Positive charge accumulates on the top surface of the sample and negative charge on the bottom surface, creating a downward electric field. In equilibrium, the downward electric force on the charge carriers balances the upward magnetic force and the carriers move through the sample without deflection. The Hall voltage ΔVH = Vc − Va between the top and bottom surfaces is measured, and the density of the charge carriers can be calculated from it. (a) Demonstrate that if the charge carriers are negative the Hall voltage will be negative. Hence, the Hall effect reveals the sign of the charge carriers, so the sample can be classified as p-type (with positive majority charge carriers) or n-type (with negative). (b) Determine the number of charge carriers per unit volume n in terms of I, t, B, ΔVH, and the magnitude q of the carrier charge. Figure P22.66arrow_forwardA particle moving downward at a speed of 6.0106 m/s enters a uniform magnetic field that is horizontal and directed from east to west. (a) If the particle is deflected initially to the north in a circular arc, is its charge positive or negative? (b) If B = 0.25 T and the charge-to-mass ratio (q/m) of the particle is 40107 C/kg. what is ±e radius at the path? (c) What is the speed of the particle after c has moved in the field for 1.0105s ? for 2.0s?arrow_forwardA uniform magnetic field B=5.44104iT passes through a closed surface with a slanted top as shown in Figure P31.59. a. Given the dimensions and orientation of the closed surface shown, what is the magnetic flux through the slanted top of the surface? b. What is the net magnetic flux through the entire closed surface?arrow_forward
- Why is the following situation impossible? Figure P28.46 shows an experimental technique for altering the direction of travel for a charged particle. A particle of charge q = 1.00 C and mass m = 2.00 1015 kg enters the bottom of the region of uniform magnetic field at speed = 2.00 105 m/s, with a velocity vector perpendicular to the field lines. The magnetic force on the particle causes its direction of travel to change so that it leaves the region of the magnetic field at the top traveling at an angle from its original direction. The magnetic field has magnitude B = 0.400 T and is directed out of the page. The length h of the magnetic field region is 0.110 m. An experimenter performs the technique and measures the angle at which the particles exit the top of the field. She finds that the angles of deviation are exactly as predicted. Figure P28.46arrow_forwardAn infinite sheet of current lying in the yz plane carries a surface current of lineardensity Js. The current is in the positive z direction, and Js represents the current perunit length measured along the y axis. Figure P30.34 is an edge view of the sheet. Prowthat the magnetic field near the sheet is parallel to the sheet and perpendicular to thecurrent direction, with magnitude μ0Js/2.arrow_forwardFigure P30.19 20. Two long, parallel wires carry currents of I₁ 3.00 A and I₂ = 5.00 A in the directions indicated in Figure P30.20. (a) Find the magnitude and direction of the magnetic field at a point midway between the wires. (b) Find the magnitude and direction of the magnetic field at point P, located d = 20.0 cm above the wire car- rying the 5.00-A current. I₁ d d Figure P30.20 12 =arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY