A Differentiating Circuit. The current in a resistanceless inductor is caused to vary with time as shown in the graph of Fig. Q30.10 . (a) Sketch the pattern that would be observed on the screen of an oscilloscope connected to the terminals of the inductor. (The oscilloscope spot sweeps horizontally across the screen at a constant speed, and its vertical deflection is proportional to the potential difference between the inductor terminals.) (b) Explain why a circuit with an inductor can be described as a “differentiating circuit.” Figure Q30.10
A Differentiating Circuit. The current in a resistanceless inductor is caused to vary with time as shown in the graph of Fig. Q30.10 . (a) Sketch the pattern that would be observed on the screen of an oscilloscope connected to the terminals of the inductor. (The oscilloscope spot sweeps horizontally across the screen at a constant speed, and its vertical deflection is proportional to the potential difference between the inductor terminals.) (b) Explain why a circuit with an inductor can be described as a “differentiating circuit.” Figure Q30.10
A Differentiating Circuit. The current in a resistanceless inductor is caused to vary with time as shown in the graph of Fig. Q30.10. (a) Sketch the pattern that would be observed on the screen of an oscilloscope connected to the terminals of the inductor. (The oscilloscope spot sweeps horizontally across the screen at a constant speed, and its vertical deflection is proportional to the potential difference between the inductor terminals.) (b) Explain why a circuit with an inductor can be described as a “differentiating circuit.”
Part C
Find the height yi
from which the rock was launched.
Express your answer in meters to three significant figures.
Learning Goal:
To practice Problem-Solving Strategy 4.1 for projectile motion problems.
A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration.
PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems
MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model.
VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ.
SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…
Phys 25
Chapter 30 Solutions
University Physics with Modern Physics (14th Edition)
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY