University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 30.62P
(a)
To determine
The current through the resistor
(b)
To determine
The current through the resistor
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In the figure, R = 11.0 Ω, C = 6.82 μF, and L = 54.0 mH, and the ideal battery has emf = 32.0 V. The switch is kept in position a for a long time and then thrown to position b. What are the (a) frequency and (b) current amplitude of the resulting oscillations?
Consider the circuit shown in the figure below where L = 5.10 mH and R₂ = 410 N.
L
voo
24.0 V
+
a
S
ob
R₁
R₂
(a) When the switch is in position a, for what value of R₁ will the circuit have a time constant of 14.9 µs?
ΚΩ
(b) What is the current in the inductor at the instant the switch is thrown to position b?
mA
Consider the circuit shown in the figure below, where L = 5.05 mH and R₂ = 440 02. The switch S can be positioned at either a or b.
S
000
b
404
R₁
24.0 V
L
a
R₂
(a) When the switch is at position a, the time constant is 15.4 us. What is R₂ (in k)?
1
ΚΩ
(b) What is the current in the inductor at the instant the switch is thrown to position b?
mA
e
Chapter 30 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 30.1 - Consider the Tesla coil described in Example 30.1....Ch. 30.2 - Prob. 30.2TYUCh. 30.3 - Prob. 30.3TYUCh. 30.4 - Prob. 30.4TYUCh. 30.5 - Prob. 30.5TYUCh. 30.6 - An L-R-C series circuit includes a 2.0- resistor....Ch. 30 - In an electric trolley or bus system, the vehicles...Ch. 30 - From Eq. (30.5) 1 H = 1 Wb/A. and from Eqs. (30.4)...Ch. 30 - Prob. 30.3DQCh. 30 - Prob. 30.4DQ
Ch. 30 - Prob. 30.5DQCh. 30 - Two closely wound circular coils have the same...Ch. 30 - Prob. 30.7DQCh. 30 - For the same magnetic field strength B, is the...Ch. 30 - Prob. 30.9DQCh. 30 - A Differentiating Circuit. The current in a...Ch. 30 - In Section 30.5 Kirchhoffs loop rule is applied to...Ch. 30 - Prob. 30.12DQCh. 30 - Prob. 30.13DQCh. 30 - In the R-L circuit shown in Fig. 30.11, is the...Ch. 30 - Prob. 30.15DQCh. 30 - In an L-R-C series circuit, what criteria could be...Ch. 30 - Prob. 30.1ECh. 30 - Prob. 30.2ECh. 30 - Prob. 30.3ECh. 30 - Prob. 30.4ECh. 30 - Prob. 30.5ECh. 30 - Prob. 30.6ECh. 30 - A 2.50-mH toroidal solenoid has an average radius...Ch. 30 - Prob. 30.8ECh. 30 - Prob. 30.9ECh. 30 - Prob. 30.10ECh. 30 - Prob. 30.11ECh. 30 - Prob. 30.12ECh. 30 - Prob. 30.13ECh. 30 - A long, straight solenoid has 800 turns. When the...Ch. 30 - Prob. 30.15ECh. 30 - Prob. 30.16ECh. 30 - Prob. 30.17ECh. 30 - Prob. 30.18ECh. 30 - Prob. 30.19ECh. 30 - Prob. 30.20ECh. 30 - In a proton accelerator used in elementary...Ch. 30 - It is proposed to store l.00 kWh = 3.60 106J of...Ch. 30 - Prob. 30.23ECh. 30 - Prob. 30.24ECh. 30 - Prob. 30.25ECh. 30 - In Fig. 30.11, switch S1 is closcd while switch S2...Ch. 30 - In Fig. 30.11, suppose that = 60.0 V, R = 240 ,...Ch. 30 - Prob. 30.28ECh. 30 - Prob. 30.29ECh. 30 - Prob. 30.30ECh. 30 - In an L-C circuit. L = 85.0 mH and C = 3.20F....Ch. 30 - Prob. 30.32ECh. 30 - A 7.50-nF capacitor is charged up to 12.0 V, then...Ch. 30 - Prob. 30.34ECh. 30 - Prob. 30.35ECh. 30 - A Radio Tuning Circuit. The minimum capacitance of...Ch. 30 - An L-C circuit containing an 80.0-mH inductor and...Ch. 30 - An L-R-C series circuit has L = 0.600 H and C =...Ch. 30 - Prob. 30.39ECh. 30 - An L-R-C series circuit has L = 0.400 H, C = 7.00...Ch. 30 - Prob. 30.41ECh. 30 - Prob. 30.42PCh. 30 - Prob. 30.43PCh. 30 - Prob. 30.44PCh. 30 - Solar Magnetic Energy. Magnetic fields within a...Ch. 30 - CP CALC A Coaxial Cable. A small solid conductor...Ch. 30 - Prob. 30.47PCh. 30 - CALC Consider the circuit in Fig. 30.11 with both...Ch. 30 - Prob. 30.49PCh. 30 - Prob. 30.50PCh. 30 - Prob. 30.51PCh. 30 - Prob. 30.52PCh. 30 - Prob. 30.53PCh. 30 - A 6.40-nF capacitor is charged to 24.0 V and then...Ch. 30 - An L-C circuit consists of a 60.0-mH inductor and...Ch. 30 - A charged capacitor with C = 590 F is connected in...Ch. 30 - CP In the circuit shown in Fig. P30.57, the switch...Ch. 30 - Prob. 30.58PCh. 30 - Prob. 30.59PCh. 30 - Prob. 30.60PCh. 30 - Prob. 30.61PCh. 30 - Prob. 30.62PCh. 30 - Prob. 30.63PCh. 30 - After the current in the circuit of Fig. P30.63...Ch. 30 - CP In the circuit shown in Fig. P30.65, switch S...Ch. 30 - Prob. 30.66PCh. 30 - Prob. 30.67PCh. 30 - Prob. 30.68PCh. 30 - Prob. 30.69PCh. 30 - CP A Volume Gauge. A tank containing a liquid has...Ch. 30 - Prob. 30.71CPCh. 30 - BIO QUENCHING AN MRI MAGNET. Magnets carrying very...Ch. 30 - BIO QUENCHING AN MRI MAGNET. Magnets carrying very...Ch. 30 - BIO QUENCHING AN MRI MAGNET. Magnets carrying very...Ch. 30 - BIO QUENCHING AN MRI MAGNET. Magnets carrying very...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider the circuit in Figure P32.18, taking = 6.00 V, L = 8.00 mH, and R = 4.00 . (a) What is the inductive time constant of the circuit? (b) Calculate the current in the circuit 250 s after the switch is closed. (c) What is the value of the final steady-state current? (d) After what time interval does the current reach 80.0% of its maximum value?arrow_forwarda 12.0 V ideal battery, a 20.0 resistor, and an inductor are connected by a switch at time t = 0. At what rate is the battery transferring energy to the inductor’s field at t = 1.61tL?arrow_forwardIn the figure ɛ = 10.0 V, R = 4.00 0, and R2 = 1.00 N. The inductor has an internal resistance of r = 1.00 N. What is the power delivered by the battery as soon as the switch is closed? Give your answer in W. Şekildeki devrede ɛ = 10.0 V, R1 = 4.00 n, ve R2 = 1.00 n olarak verilmişlerdir. Solenoidin iç direnci r = 1.00 N olarak verilmiştir. Anahtar kapatılır kapatılmaz bataryanın devreye verdiği güç W cinsinden nedir? R E- R2 L. Yanıtınızarrow_forward
- A battery of emf 30.0 V is connected to a switch, an inductor of inductance ? = 0.600 ? and two resistors, R1 = 10.0 and R2 = 6.00. The switch is initially open. A. What are the values of currents i1, i2, i3 just after the switch is closed? (Just give an answer) i1= i2 = i3 = B.)Which point, a or b, is at higher potential or are they at the same potential, just after switch S is closed? (Just give an answer) C. What is the value of current i1 through the battery a long time after the switch is closed? Show your work and briefly explain your logicarrow_forwardAn RL circuit has an emf source of 28 v, a 62 resistor, a 38 H inductor, and a switch. At what rate, as a function of t, does the emf across the inductor change after the switch is closed?arrow_forwardIn the circuit shown in (Figure 1), E = 56.0 V, R₁ = 36.0 , R₂ = 22.0 N, and L = 0.290 H. Figure a www R₁ www. vooo R₂ C L + d 1 of 1 b Part A Switch S is closed. At some time t afterward the current in the inductor is increasing at a rate of di/dt = 50.0 A/s. At this instant, what is the current 2₁ through R₁? Express your answer in amperes. IVE ΑΣΦ ? i₁ = A Submit Request Answer Part B Switch S is closed. At some time t afterward the current in the inductor is increasing at a rate of di/dt = 50.0 A/s. At this instant, what is the current 22 through R2? Express your answer in amperes. IVE ΑΣΦ ? 22 = Submit Request Answer Aarrow_forward
- The battery terminal voltage in the figure below is E = 7.10 V and the current I reaches half its maximum value of 8.00 A at t = 0.120 s after the switch is closed. S + R HINT (a) Calculate the time constant t (in s). S (b) What is the potential difference (in V) across the inductor att = 0.120 s? V (c) What is the potential difference (in V) across the inductor in the instant after the switch is closed at t = 0? V llarrow_forwardIn the circuit shown in Fig., E = 60.0 V, R1 = 40.0 Ω, R2 = 25.0 Ω, and L = 0.300 H. (a) Switch S is closed. At some time t afterward, the current in the inductor is increasing at a rate of di>dt = 50.0 A>s. At this instant, what are the current i1 through R1 and the current i2 through R2?arrow_forwardIn the figure ɛ = 10.0 V, R, = 4.00 N , and R2 = 1.00 N. The inductor is ideal. If the switch is closed for a long time, what is the current through the inductor. Give your answer in A. Şekildeki devrede ɛ = 10.0 V, R1 = 4.00 N , ve R2 = 1.00 N olarak verilmişlerdir. Solenoidin iç direnci yoktur. Anahtar kapatıldıktan çok uzun süre sonra solenoidden geçen akım A cinsinden nedir. R E- R2 L anıtınız learrow_forward
- An electromagnet can be modeled as an inductor in series with a resistor. Consider a large electromagnet of inductance L = 15.0 H and resistance R = 2.50 2 connected to a 18.0-V battery and switch as in the figure shown below. After the switch is closed, find the following. S + I R www L (a) the maximum current carried by the electromagnet A (b) the time constant of the circuit S (c) the time it takes the current to reach 95.0% of its maximum value Sarrow_forwardAn LR circuit is hooked up to a battery as shown in the figure, with the switch initially open. The resistance in the circuit is R=140 Ω, the inductance is L=2.20 H, and the battery maintains a voltage of E=48.0 V. At time t=0 the switch is closed. a) What is the current through the circuit after the switch has been closed for t=6.91E-3 s?1.22×10-1 A b) What is the voltage across the inductor after the switch has been closed for t= 6.91E-3 seconds?3.09×101 V How much energy is stored in the inductor at t= 6.91E-3 seconds. What is the power dissipation in the resistor at t=6.91E-3 seconds?2.09 W c) How much energy is stored in the inductor at t= 6.91E-3 seconds 1.64×10-2 J d) How much work has the battery done from the time the switch was closed until t=6.91E-3 s? e) How much energy has been dissipated in the resistor from the time the switch was closed until t= 6.91E-3 seconds? (The answers in bold are answers for the previous questions. I need help with d and e)arrow_forwardIn the circuit shown in Fig, switch S1 has been closed for a long enough time so that the current reads a steady 3.50 A. Suddenly, switch S2 is closed and S1 is opened at the same instant. (a) What is the maximum charge that the capacitor will receive? (b) What is the current in the inductor at this time?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning