College Physics
10th Edition
ISBN: 9781285737027
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 21P
(a)
To determine
The minimum possible frequency.
(b)
To determine
The wavelength.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
In a pair-production reaction, a photon produces a proton-antiproton pair.
Y → p + p
The rest energy of a proton is 938.3 MeV.
(a) What is the lowest possible frequency (in Hz) of the photon that can produce the proton-antiproton pair?
Hz
(b) What is the wavelength (in m) that corresponds to this lowest possible frequency?
Scientists observe a distant galaxy with a spectrometer. They find that the wavelength of the Lymann alpha Hydrogen line in the stars spectrum has shifted from its laboratory value of 121.6 nm to three times that value, 364.8 nm. According to the doppler effect, how fast is the galaxy receeding from us? (Find v/c of the galaxy relative to us).
Q1
Chapter 30 Solutions
College Physics
Ch. 30.6 - Prob. 30.1QQCh. 30.6 - Prob. 30.2QQCh. 30 - Prob. 1CQCh. 30 - Prob. 2CQCh. 30 - Prob. 3CQCh. 30 - Prob. 4CQCh. 30 - Prob. 5CQCh. 30 - Prob. 6CQCh. 30 - Prob. 7CQCh. 30 - Prob. 8CQ
Ch. 30 - Prob. 9CQCh. 30 - Prob. 10CQCh. 30 - Prob. 11CQCh. 30 - Prob. 12CQCh. 30 - Prob. 1PCh. 30 - Prob. 2PCh. 30 - Prob. 3PCh. 30 - Prob. 4PCh. 30 - Prob. 5PCh. 30 - Prob. 6PCh. 30 - Prob. 7PCh. 30 - Prob. 8PCh. 30 - Prob. 9PCh. 30 - Prob. 10PCh. 30 - Prob. 11PCh. 30 - Prob. 12PCh. 30 - Prob. 13PCh. 30 - Prob. 14PCh. 30 - Prob. 15PCh. 30 - Find the energy released in the fusion reaction...Ch. 30 - Find the energy released in the fusion reaction...Ch. 30 - Prob. 18PCh. 30 - Prob. 19PCh. 30 - Prob. 20PCh. 30 - Prob. 21PCh. 30 - Prob. 22PCh. 30 - Prob. 23PCh. 30 - Prob. 24PCh. 30 - Prob. 25PCh. 30 - Prob. 26PCh. 30 - Prob. 27PCh. 30 - Prob. 28PCh. 30 - Prob. 29PCh. 30 - Prob. 30PCh. 30 - Prob. 31PCh. 30 - Prob. 32PCh. 30 - Prob. 33PCh. 30 - Prob. 34PCh. 30 - Prob. 35PCh. 30 - Prob. 36PCh. 30 - Prob. 37APCh. 30 - Prob. 38APCh. 30 - Prob. 39APCh. 30 - Prob. 40APCh. 30 - Prob. 41APCh. 30 - Prob. 42APCh. 30 - Prob. 43APCh. 30 - Prob. 44APCh. 30 - Prob. 45APCh. 30 - Prob. 46APCh. 30 - Prob. 47APCh. 30 - Prob. 48APCh. 30 - Prob. 49APCh. 30 - Prob. 50AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) What is the uncertainty in the energy released in the decay of a due to its short lifetime? (b) What traction of the decay energy is this, noting that the decay mode is (so that all the mass is destroyed)?arrow_forward3arrow_forwardA) What is the approximate wavelength emitted from helium represented by the bright yellow emission line below? What is it's frequency in HZ and energy in eV? (1 eV= 1.6 x 10-19 joules). B) If the excited helium electron that emits a yellow photon in this line starts with a potential energy of 8 eV, what is the potential energy of the electron afterwards? Assume that the emission of a yellow photon is allowed by the laws of quantum mechanics. Also don't worry about the other electron.arrow_forward
- A neutral pion (º= uu or dd) decays while at rest into two photons (y). 135MeV/c² m40 = a) What is the angle between the two photons? b) What is the momentum of each photon?arrow_forwardHow rapidly would each of the following particles be moving if they all had the same wavelength as a photon of red light (wavelength = 750 nm)?a. An electron of mass 9.10939 x 10^-28 g?b. A proton of mas 1.67262 x 10^-24 gc. A neutron of mass 1.67493 x 10^-24 gd. An alpha particle of mass 6.64 x 10^-24 g Please don't provide handwriting solutionarrow_forwardQ.4. Uranium dioxide (UO,)is an oxide of uranium used in nuclear fuel rods in nuclear reactors. Calculate the mass attenuation coefficient of UO, for 1 MeV gamma rays. The density of UO, is 10 g/cm. What is their mean free path? Mean free path length (A-lambda), which is the mean distance a particle or photon travels between interactions.arrow_forward
- An electron has a total energy of 5 MeV. a. Find its momentum in units of MeV/c. and what is the Beta value, if you are able to find it? if not, don't worry about it. Thanks!arrow_forwardThe least massive particle known to exist is the electron neutrino. Though scientists once believed that it had no mass, like the photon, they have now determined that this particle has an extremely low mass, equivalent to a few electron volts. Assuming a mass of 2.2 eV/c2 (or 3.9 × 10-36 kg) and a speed of 4.4 × 106 m/s, which of the following values equals the neutrino’s de Broglie wavelength? a. 3.8 × 10-5 m b. 4.7 × 10-7m c. 1.7 × 10-10m d. 8.9 × 10-14marrow_forward99 Protons of 2 MeV energy enter a linear accelerator which has 97 drift tubes connected alternately to a 200 MHz oscillator. The final energy of the pro- tons is 50 MeV (a) What are the lengths of the second cylinder and the last cylinder (b) How many additional tubes would be needed to produce 80 MeV protons in this accelerator?arrow_forward
- Protons are accelerated from rest by a potential difference of 3.80 kVkV and strike a metal target. A) If a proton produces one photon on impact, what is the minimum wavelength of the resulting xx rays? Express your answer in meters. B) Find the minimum wavelength if 3.80 −keV−keV electrons are used instead? Express your answer in meters.arrow_forwardhd Px 5. Evaluate the following commutators: (Remember that i dx ). (a) [x.y] (b) [x.px] (c) [ps.py] (d) [x².px] (e) [(1/x).px] (f) [(1/x).p²] (g) [xpy-ypx.yp-zpyarrow_forwarda) What are the cherenkov angles for electrons and pions of 1000 MeV/c in a medium with n =1.4? b) What is the quotient of the number of photons radiated by electrons and incident pions?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax