Concept explainers
The emitted particle in the decay process of
Answer to Problem 1OQ
Option (c).
Explanation of Solution
In the decay of radioactive nucleus, the daughter nucleus has the same number of nucleon as the parent nucleon, but the atomic number is changed. Such type of radioactive decay is called beta decay. There are two types of beta decay exist, beta minus decay and beta plus decay. A neutron in the nucleus is transformed in to proton and electron in beta minus decay, and a proton is transformed into a neutron and a positron in beta plus decay.
Here the parent nuclei is
Conclusion:
Since emitted particle is an electron, option (c) is correct.
Emitted particle is an electron. Thus, option (a) is incorrect.
Emitted particle is an electron. Thus, option (b) is incorrect.
Emitted particle is an electron. Thus, option (d) is incorrect.
Emitted particle is an electron. Thus, option (e) is incorrect.
Want to see more full solutions like this?
Chapter 30 Solutions
Principles of Physics: A Calculus-Based Text
- (a) Calculate the energy released in the a decay of 238U . (b) What fraction of the mass of a single 238U is destroyed in the decay? The mass of 234Th is 234.043593 u. (c) Although the fractional mass loss is large for a single nucleus, it is difficult to observe for an entire macroscopic sample of uranium. Why is this?arrow_forward(a) Write the decay equation for the decay of 235U. (b) What energy is released in this decay? The mass of the daughter nuclide is 231.036298 u. (c) Assuming the residual nucleus is formed in its ground state, how much energy goes to the particle?arrow_forward(a) Calculate the energy released in the a decay of 238U. (b) What fraction of the mass at a single 238U is destroyed in the decay? The mass of 234Th is 234.043593 u. (c) Although the fractional mass loss is laws for a single nucleus, it is difficult to observe for an entire macroscopic sample of uranium. Why is this?arrow_forward
- Suppose you have a pure radioactive material with a half-life of T1/2. You begin with N0 undecayed nuclei of the material at t = 0. At t=12T1/2, how many of the nuclei have decayed? (a) 14N0 (b) 12N0(C) 34N0 (d) 0.707N0 (e) 0.293N0arrow_forwardDerive an approximate relationship between the energy of (decay and halflife using the following data. It may be useful to graph the leg t1/2 against Ea to find some straightline relationship. Table 31.3 Energy and HalfLife for (Decay Nuclide E( (MeV) t1/2 216Ra 9.5 0.18 (s 194Po 7.0 0.7 s 240Cm 6.4 27 d 226Ra 4.91 1600 y 232Th 4.1 1.41010yarrow_forwardA rare decay mode has been observed in which 222Raemits a 14C nucleus. (a) The decay equation is 222RaAX+14C . Identify the nuclide AX. (b) Find the energy emitted in the decay. The mass of 222Ra is 222.015353 u.arrow_forward
- (a) Write the complete decay equation for 90Sr, a major waste product of nuclear reactors, (b) Find the energy released in the decay.arrow_forwardThe ceramic glaze on a red-orange “Fiestaware” plate is U2O3and contains 50.0 grams of 238U, but very little 235U. (a) What is the activity of the plate? (b) Calculate the total energy that will be released by the 238U decay, (c) If energy is worth 12.0 cents per kWh , what is the monetary value of the energy emitted? (These brightly- colored ceramic plates went out of production some 30 years ago, but are still available as collectibles.)arrow_forwardundergoes alpha decay, (a) Write the reaction equation, (b) Find the energy released in the decay.arrow_forward
- (a) Neutron activation of sodium, which is 100% 23Na, produces 24Na, which is used in some heart scans, as seen in Table 32.1. The equation for the reaction is 23Na+n24Na+ . Find its energy output, given the mass of 24Na is 23.990962 u. (b) What mass at 24Na produces the needed 5.0mCi activity, given its halflife is 15.0 h?arrow_forwardThe Galileo space probe was launched on its long journey past Venus and Earth in 1989, with an ultimate goal of Jupiter. Its power source is 11.0 kg of 238Pu, a by-product of nuclear weapons plutonium production. Electrical energy is generated thermoelectrically from the heat produced when the 5.59-MeV a panicles emitted in each decay crash to a halt inside the plutonium and its shielding. The half-life of 238Pu is 87.7 years. What was the original activity of the 238Pu in becquerels? What power was emitted in kilowatts? What power was emitted 12.0 y after launch? You may neglect any extra energy from daughter nuclides and any losses from escaping rays.arrow_forward(a) A cancer patient is exposed to rays from a 5000Ci 60Co transillumination unit for 32.0 s. The rays are collimated in such a manner that only 1.00% of them strike the patient. Of those, 20.0% are absorbed in a tumor having a mass of 1.50 kg. What is the dose in rem to the tumor, it the average energy per decay is 1.25 MeV? None of the s from the decay reach the patient. (b) Is the dose consistent with stated therapeutic doses?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax