COLLEGE PHYSICS,VOL.1
COLLEGE PHYSICS,VOL.1
2nd Edition
ISBN: 9781111570958
Author: Giordano
Publisher: CENGAGE L
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 3, Problem 92P

(a)

To determine

The number of times terminal speed greater than for steel sphere that of the wooden sphere.

(a)

Expert Solution
Check Mark

Answer to Problem 92P

The steel’s sphere terminal speed is 4 times greater than for the velocity of wooden sphere.

Explanation of Solution

Write the expression for terminal velocity of the object.

  vterm=2mgρA        (I)

Here, m is the mass, g is the acceleration due to gravity, ρ is the density of air, and A is the cross section area of the object.

The cross sectional area of the sphere is,

  A=πr2=π(d2)2        (II)

Here, r is the radius of the sphere and d is the diameter of the sphere.

Rewrite the above equation for terminal velocity of wooden sphere.

  vterm(wood)=2mgρAwood        (III)

Here, Awood is the cross section area of the wooden sphere.

Rewrite the equation (I) for terminal velocity of steel sphere.

  vterm(steel)=2mgρAsteel        (IV)

Here, Asteel is the cross section area of the steel sphere.

Conclusion:

Solve the equation (III) and (IV).

  vterm(wood)vterm(steel)=2mgρAwood2mgρAsteel=AsteelAwood

Rewrite the above relation by using equation (2).

  vterm(wood)vterm(steel)=π(dsteel2)2π(dwood2)2=(dsteel)2(dwood)2=dsteeldwood

Substitute 40cm for dwood and 10cm for dsteel in above relation.

  vterm(wood)vterm(steel)=10cm40cmvterm(wood)vterm(steel)=14vterm(wood)=14vterm(steel)

Therefore, the steel’s sphere terminal speed is 4 times greater than for the velocity of wooden sphere, due to its smaller cross sectional area.

(b)

To determine

The ratio of the terminal speed of the steel sphere to that of wooden sphere.

(b)

Expert Solution
Check Mark

Answer to Problem 92P

The terminal velocity of the steel sphere is twice the velocity of the wooden sphere due to its higher mass.

Explanation of Solution

From part (a),

The ratio of the terminal speed of the steel sphere to that of wooden sphere for different mass of the sphere with same cross sectional area is,

  vterm(wood)vterm(steel)=2mwoodgρA2msteelgρA=mwoodmsteel

Conclusion:

Substitute 40kg for msteel and 10kg for mwood in above relation.

  vterm(wood)vterm(steel)=10kg40kgvterm(wood)vterm(steel)=12vterm(wood)=12vterm(steel)

Therefore, the terminal velocity of the steel sphere is twice the velocity of the wooden sphere due to its higher mass.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Use the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: Incident ray at A Note: This diagram is not to scale. a Air (n = 1.00) Water (n = 1.34) 1) Determine the angle of refraction of the ray of light in the water. B
Hi can u please solve
6. Bending a lens in OpticStudio or OSLO. In either package, create a BK7 singlet lens of 10 mm semi-diameter and with 10 mm thickness. Set the wavelength to the (default) 0.55 microns and a single on-axis field point at infinite object distance. Set the image distance to 200 mm. Make the first surface the stop insure that the lens is fully filled (that is, that the entrance beam has a radius of 10 mm). Use the lens-maker's equation to calculate initial glass curvatures assuming you want a symmetric, bi-convex lens with an effective focal length of 200 mm. Get this working and examine the RMS spot size using the "Text" tab of the Spot Diagram analysis tab (OpticStudio) or the Spd command of the text widnow (OSLO). You should find the lens is far from diffraction limited, with a spot size of more than 100 microns. Now let's optimize this lens. In OpticStudio, create a default merit function optimizing on spot size.Then insert one extra line at the top of the merit function. Assign the…

Chapter 3 Solutions

COLLEGE PHYSICS,VOL.1

Ch. 3 - Prob. 4QCh. 3 - Prob. 5QCh. 3 - Prob. 6QCh. 3 - Prob. 7QCh. 3 - Prob. 8QCh. 3 - The lower piece of silk in Figure 3.20 is acted on...Ch. 3 - Devise a block-and-tackle arrangement that...Ch. 3 - Prob. 11QCh. 3 - Prob. 12QCh. 3 - Prob. 13QCh. 3 - Prob. 14QCh. 3 - Prob. 15QCh. 3 - Prob. 16QCh. 3 - Prob. 17QCh. 3 - Prob. 18QCh. 3 - Prob. 19QCh. 3 - Prob. 1PCh. 3 - Prob. 2PCh. 3 - Prob. 3PCh. 3 - Prob. 4PCh. 3 - Prob. 5PCh. 3 - Prob. 6PCh. 3 - Prob. 7PCh. 3 - Prob. 8PCh. 3 - Prob. 9PCh. 3 - Prob. 10PCh. 3 - Prob. 11PCh. 3 - Prob. 12PCh. 3 - Prob. 13PCh. 3 - Prob. 14PCh. 3 - Prob. 15PCh. 3 - Prob. 16PCh. 3 - Prob. 17PCh. 3 - Prob. 18PCh. 3 - Prob. 19PCh. 3 - Prob. 20PCh. 3 - Prob. 21PCh. 3 - Prob. 22PCh. 3 - A bullet is fired upward with a speed v0 from the...Ch. 3 - Prob. 24PCh. 3 - Prob. 25PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28PCh. 3 - Prob. 29PCh. 3 - Prob. 30PCh. 3 - Prob. 31PCh. 3 - Prob. 32PCh. 3 - Your friends car has broken down, and you...Ch. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Prob. 36PCh. 3 - Prob. 37PCh. 3 - Prob. 38PCh. 3 - Prob. 39PCh. 3 - You are given the job of moving a refrigerator of...Ch. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - Prob. 43PCh. 3 - Prob. 44PCh. 3 - Prob. 45PCh. 3 - Prob. 46PCh. 3 - A hockey puck slides along a rough, icy surface....Ch. 3 - Prob. 48PCh. 3 - Prob. 49PCh. 3 - Prob. 50PCh. 3 - Prob. 51PCh. 3 - Prob. 52PCh. 3 - Prob. 53PCh. 3 - Prob. 54PCh. 3 - Prob. 55PCh. 3 - Prob. 56PCh. 3 - Prob. 57PCh. 3 - Prob. 58PCh. 3 - Prob. 59PCh. 3 - Prob. 60PCh. 3 - A crate of mass 55 kg is attached to one end of a...Ch. 3 - Prob. 62PCh. 3 - Prob. 63PCh. 3 - In traction. When a large bone such as the femur...Ch. 3 - Prob. 65PCh. 3 - Prob. 66PCh. 3 - Prob. 67PCh. 3 - Prob. 68PCh. 3 - Calculate the terminal speed for a pollen grain...Ch. 3 - Prob. 70PCh. 3 - Prob. 71PCh. 3 - Calculate the terminal speed for a baseball. A...Ch. 3 - Prob. 73PCh. 3 - Prob. 74PCh. 3 - Prob. 75PCh. 3 - Prob. 76PCh. 3 - Prob. 77PCh. 3 - Prob. 78PCh. 3 - Prob. 79PCh. 3 - Prob. 80PCh. 3 - Prob. 81PCh. 3 - Prob. 82PCh. 3 - Prob. 83PCh. 3 - Prob. 84PCh. 3 - Prob. 85PCh. 3 - An impish young lad Stands on a bridge 10 m above...Ch. 3 - Prob. 87PCh. 3 - Prob. 88PCh. 3 - Prob. 89PCh. 3 - Prob. 90PCh. 3 - Prob. 91PCh. 3 - Prob. 92PCh. 3 - Prob. 93PCh. 3 - Prob. 94PCh. 3 - Prob. 95PCh. 3 - Prob. 96PCh. 3 - Prob. 97PCh. 3 - Prob. 98PCh. 3 - Prob. 99P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY