Concept explainers
(a)
To identify an action-reaction pair of forces.
(a)
Answer to Problem 1Q
The force the person exerts on the wall and the force the wall exerts on the person is an action-reaction pair.
Explanation of Solution
Action – reaction pair of forces always acts on separate object.
When a person pushes on a wall, the wall pushes back on the person. Here the person exerts force on the wall and wall in turn exerts force on the person. The force exerted by the person on the wall is equal in magnitude and opposite in direction to the force exerted by the wall on the person and they acts on different objects.
Conclusion:
Therefore, the force the person exerts on the wall and the force the wall exerts on the person is an action-reaction pair.
(b)
To identify an action-reaction pair of forces, book resting on the table.
(b)
Answer to Problem 1Q
The gravitational force exerted the book on the table and the normal force exerted by the table on the book is action-reaction pair force.
Explanation of Solution
The gravitational force exerted by the book on the table and the normal force exerted by the table on the book is action-reaction pair force and they acts on different objects. The gravitational force exerted by the book on the table is equal in magnitude and opposite in direction to the force exerted by the table on the book.
Conclusion:
Therefore, the gravitational force exerted the book on the table and the normal force exerted by the table on the book is action-reaction pair force.
(c)
To identify an action-reaction pair of forces, a hockey puck sliding across an icy surface.
(c)
Answer to Problem 1Q
The
Explanation of Solution
The frictional force exerted by the moving hockey puck on the ice and the frictional force exerted by the ice on the hockey puck is action-reaction pair force and they acts on different objects. The frictional force exerted by the moving hockey puck on the ice is equal in magnitude and opposite in direction to the frictional force exerted by the ice on the hockey puck.
Conclusion:
Therefore, the frictional force exerted by the moving hockey puck on the ice and the frictional force exerted by the ice on the hockey puck is action-reaction pair force.
(d)
To identify an action-reaction pair of forces, a car accelerating from rest.
(d)
Answer to Problem 1Q
The frictional force exerted by the tire on the road and the force exerted by the road on the tire is action-reaction pair force.
Explanation of Solution
The frictional force exerted by the tire on the road and the force exerted by the road on the tire is action-reaction pair force and they acts on different objects. The frictional force exerted by the rotating tire on the road is equal in magnitude and opposite in direction to the frictional force exerted by the road on the tire.
Conclusion:
Therefore, the frictional force exerted by the tire on the road and the force exerted by the road on the tire is action-reaction pair force.
(e)
To identify an action-reaction pair of forces, an object undergoing free fall in a vacuum.
(e)
Answer to Problem 1Q
The gravitational force exerted on the object by the object on which the object is falling and gravitational force on the falling object on which the object is falling is an action-reaction pair.
Explanation of Solution
The gravitational force exerted on the object by the object on which the object is falling is equal in magnitude and opposite in direction to gravitational force on the falling object on which the object is falling is an action-reaction pair and they acts on different objects.
Conclusion:
Therefore, the gravitational force exerted on the object by the object on which the object is falling and gravitational force on the falling object on which the object is falling is an action-reaction pair.
(f)
To identify an action-reaction pair of forces, a basketball player jumping to dunk a basketball.
(f)
Answer to Problem 1Q
The force exerted by the basketball player against the floor and the force the floor exerts on the basket ball are action-reaction pairs.
Explanation of Solution
The force exerted by the basketball player against the floor while he dunks the ball and the force the floor exerts on the basket ball are equal in magnitude and opposite in direction and they acts on different objects. The force exerted by the basketball player against the floor while and the force the floor exerts on the basket ball are action-reaction pairs.
Conclusion:
Therefore, the force exerted by the basketball player against the floor while and the force the floor exerts on the basket ball are action-reaction pairs.
(g)
To identify an action-reaction pair of forces, a person throwing a baseball.
(g)
Answer to Problem 1Q
The force the person exerts against the basket ball to accelerate it and the force the basketball exerts on the person is action-reaction pair.
Explanation of Solution
The force the person exerts against the basket ball to accelerate it and the force the basketball exerts on the person is equal in magnitude and opposite in direction and they acts on different objects. The force the person exerts against the basket ball to accelerate it and the force the basketball exerts on the person is action-reaction pair.
Conclusion:
Therefore, the force the person exerts against the basket ball to accelerate it and the force the basketball exerts on the person is action-reaction pair.
Want to see more full solutions like this?
Chapter 3 Solutions
COLLEGE PHYSICS,VOL.1
- 1. A long silver rod of radius 3.5 cm has a charge of -3.9 ис on its surface. Here ŕ is a unit vector ст directed perpendicularly away from the axis of the rod as shown in the figure. (a) Find the electric field at a point 5 cm from the center of the rod (an outside point). E = N C (b) Find the electric field at a point 1.8 cm from the center of the rod (an inside point) E=0 Think & Prepare N C 1. Is there a symmetry in the charge distribution? What kind of symmetry? 2. The problem gives the charge per unit length 1. How do you figure out the surface charge density σ from a?arrow_forward1. Determine the electric flux through each surface whose cross-section is shown below. 55 S₂ -29 S5 SA S3 + 9 Enter your answer in terms of q and ε Φ (a) s₁ (b) s₂ = -29 (C) Φ զ Ερ (d) SA = (e) $5 (f) Sa $6 = II ✓ -29 S6 +39arrow_forwardNo chatgpt pls will upvotearrow_forward
- the cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forwardstate the difference between vector and scalar quarrow_forward
- Please don't use Chatgpt will upvote and give handwritten solutionarrow_forwardNo chatgpt pls will upvotearrow_forwardThe shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along its axis. 5.6 m. 4 m- B Part A Determine the compressive force along leg AB. Express your answer to three significant figures and include the appropriate units. FAB = Value Submit Request Answer Part B Units ? Determine the compressive force along leg CB. Express your answer to three significant figures and include the appropriate units. FCB= Value Submit Request Answer Part C ? Units Determine the tension in the winch cable DB. Express your answer with the appropriate units. 2marrow_forward
- Part A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?arrow_forwardThe particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-arrow_forwardThe 10-lb weight is supported by the cord AC and roller and by the spring that has a stiffness of k = 10 lb/in. and an unstretched length of 12 in. as shown in. Part A Determine the distance d to maintain equilibrium. Express your answer in inches to three significant figures. 節 ΕΠΙ ΑΣΦ d = *k J vec 5 t 0 ? d C A in. 12 in. Barrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning