COLLEGE PHYSICS,VOL.1
2nd Edition
ISBN: 9781111570958
Author: Giordano
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3Q
To determine
An example for motion with zero displacement and non-zero velocity and plot the position-time and velocity-time graphs.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A student drives a moped along a straight road as described by the velocity–time graph as shown. Sketch this graph in the middle of a sheet of graph paper. (a) Directly above your graph, sketch a graph of the position versus time, aligning the time coordinates of the two graphs. (b) Sketch a graph of the acceleration versus time directly below the velocity–time graph, again aligning the time coordinates. On each graph, show the numerical values of x and ax for all points of inflection. (c) What is the acceleration at t = 6.00 s? (d) Find the position (relative to the starting point) at t = 6.00 s. (e) What is the moped’s final position at t = 9.00 s?
A particle moves only along the x axis. Its position varies with time according to the equation x = -6t + 2t^2, where x is in meters and t is in seconds. a) Graph its position, velocity, and acceleration, as a function of time, in the interval 0 ≤ t ≤ 4 s. (Use a table for t = 0, 1, 2, 3, 4 s to construct the graphs). b) In what time interval does it move to the left and in which time interval does it move to the right? c) Calculate the instantaneous velocity and acceleration at t = 1.5 s.
When given a velocity vs. time graph, draw the corresponding position vs. time and acceleration vs. time graphs. Graphs should include labels (including numerical values and correct units) for both the horizontal and vertical axes. The values don't have to be exactly right, but they should be relatively close. If possible, find the slope and apply it to a real life situation.
Chapter 3 Solutions
COLLEGE PHYSICS,VOL.1
Ch. 3.2 - Prob. 3.1CCCh. 3.3 - Prob. 3.2CCCh. 3.4 - Prob. 3.3CCCh. 3.4 - Prob. 3.4CCCh. 3.5 - Prob. 3.5CCCh. 3.6 - Prob. 3.6CCCh. 3.7 - Acceleration of a Skydiver Figure 3.27 shows a...Ch. 3 - Prob. 1QCh. 3 - Prob. 2QCh. 3 - Prob. 3Q
Ch. 3 - Prob. 4QCh. 3 - Prob. 5QCh. 3 - Prob. 6QCh. 3 - Prob. 7QCh. 3 - Prob. 8QCh. 3 - The lower piece of silk in Figure 3.20 is acted on...Ch. 3 - Devise a block-and-tackle arrangement that...Ch. 3 - Prob. 11QCh. 3 - Prob. 12QCh. 3 - Prob. 13QCh. 3 - Prob. 14QCh. 3 - Prob. 15QCh. 3 - Prob. 16QCh. 3 - Prob. 17QCh. 3 - Prob. 18QCh. 3 - Prob. 19QCh. 3 - Prob. 1PCh. 3 - Prob. 2PCh. 3 - Prob. 3PCh. 3 - Prob. 4PCh. 3 - Prob. 5PCh. 3 - Prob. 6PCh. 3 - Prob. 7PCh. 3 - Prob. 8PCh. 3 - Prob. 9PCh. 3 - Prob. 10PCh. 3 - Prob. 11PCh. 3 - Prob. 12PCh. 3 - Prob. 13PCh. 3 - Prob. 14PCh. 3 - Prob. 15PCh. 3 - Prob. 16PCh. 3 - Prob. 17PCh. 3 - Prob. 18PCh. 3 - Prob. 19PCh. 3 - Prob. 20PCh. 3 - Prob. 21PCh. 3 - Prob. 22PCh. 3 - A bullet is fired upward with a speed v0 from the...Ch. 3 - Prob. 24PCh. 3 - Prob. 25PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28PCh. 3 - Prob. 29PCh. 3 - Prob. 30PCh. 3 - Prob. 31PCh. 3 - Prob. 32PCh. 3 - Your friends car has broken down, and you...Ch. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Prob. 36PCh. 3 - Prob. 37PCh. 3 - Prob. 38PCh. 3 - Prob. 39PCh. 3 - You are given the job of moving a refrigerator of...Ch. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - Prob. 43PCh. 3 - Prob. 44PCh. 3 - Prob. 45PCh. 3 - Prob. 46PCh. 3 - A hockey puck slides along a rough, icy surface....Ch. 3 - Prob. 48PCh. 3 - Prob. 49PCh. 3 - Prob. 50PCh. 3 - Prob. 51PCh. 3 - Prob. 52PCh. 3 - Prob. 53PCh. 3 - Prob. 54PCh. 3 - Prob. 55PCh. 3 - Prob. 56PCh. 3 - Prob. 57PCh. 3 - Prob. 58PCh. 3 - Prob. 59PCh. 3 - Prob. 60PCh. 3 - A crate of mass 55 kg is attached to one end of a...Ch. 3 - Prob. 62PCh. 3 - Prob. 63PCh. 3 - In traction. When a large bone such as the femur...Ch. 3 - Prob. 65PCh. 3 - Prob. 66PCh. 3 - Prob. 67PCh. 3 - Prob. 68PCh. 3 - Calculate the terminal speed for a pollen grain...Ch. 3 - Prob. 70PCh. 3 - Prob. 71PCh. 3 - Calculate the terminal speed for a baseball. A...Ch. 3 - Prob. 73PCh. 3 - Prob. 74PCh. 3 - Prob. 75PCh. 3 - Prob. 76PCh. 3 - Prob. 77PCh. 3 - Prob. 78PCh. 3 - Prob. 79PCh. 3 - Prob. 80PCh. 3 - Prob. 81PCh. 3 - Prob. 82PCh. 3 - Prob. 83PCh. 3 - Prob. 84PCh. 3 - Prob. 85PCh. 3 - An impish young lad Stands on a bridge 10 m above...Ch. 3 - Prob. 87PCh. 3 - Prob. 88PCh. 3 - Prob. 89PCh. 3 - Prob. 90PCh. 3 - Prob. 91PCh. 3 - Prob. 92PCh. 3 - Prob. 93PCh. 3 - Prob. 94PCh. 3 - Prob. 95PCh. 3 - Prob. 96PCh. 3 - Prob. 97PCh. 3 - Prob. 98PCh. 3 - Prob. 99P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Under which of the following conditions is the magnitude of the average velocity of a particle moving in one dimension smaller than the average speed over some time interval? (a) A particle moves in the +x direction without reversing. (b) A particle moves in the x direction without reversing. (c) A particle moves in the +x direction and then reverses the direction of its motion. (d) There are no conditions for which it is true.arrow_forwardA positiontime graph for a particle moving along the x axis is shown in Figure P2.5. (a) Find the average velocity in the time interval t = 1.50 s to t = 4.00 s. (b) Determine the instantaneous velocity at t = 2.00 s by measuring the slope of the tangent line shown in the graph. (c) At what value of t is the velocity zero? Figure P2.5arrow_forwardThe figure below is the position vs time graph for a moving object. What is the object's average velocity (a) between t=0s and t=1.0s? (b) between t=Os and t=4.0s? (c) between t=3.0s and t=6.0s? (d) What is its average speed for each of the time segments in parts a/b/c? In your solution write-up, be sure to clearly define and label variables, begin all calculations by expanding an equation definition using the variables needed for that particular part (that is, one should be able to tell which part the solution belongs to even if 'part a', 'part b' etc were omitted), and show all steps for your calculations. x (m) 4 3 1 t (s) 6. 1 3 4 5 2.arrow_forward
- A particle moves along the x axis beginning at x = −2 m at time zero. The particle moves forward at speed 4 m/s for 3 seconds, then backward at 3 m/s for 2 seconds, then forward again at 1 m/s for 3 seconds. Draw a position vs. time graph for this motion. Draw a velocity vs. time graph for the same motion.arrow_forwardBased on the velocity and time graph given how far does the object move in the interval from t=0 to t=2, could you please show the equation used as wellarrow_forwardA scooter begins at rest at t0=0.0s. The scooter starts moving, and eventually covers a distance d=886m in a time tf=176s. In a coordinate system with north being the positive x direction, the scooter's motion is towards the north. 1)What was the scooter's average speed, in meters per second, during this period? 2)What was the scooter's displacement, in meters, in the northern direction during this period? 3)What was the scooter's average velocity, in meters per second, in the northern direction during this period ? 4)A second scooter begins traveling from rest at t0=0.0s and stops at t′f=176s. If this scooter's final velocity at t′fwas 12.0m/s , then what was this scooter's average acceleration, in meters per squared second, in the northern direction?arrow_forward
- I am having trouble with an average speed problem. The problem states that a person walks at 4.5 meters per second from point a to b. Then walks back from point b to a at a speed of 3.2 m/s. I know that average speed is displacement/time. However I am not sure how to calculate time or displacement from the two givens. The problem also gives that the average velocity is 0.arrow_forwardPosition, Velocity, and Acceleration 1. A position-time graph for a particle moving along the x axis is shown in the figure. (a) Find the average velocity in the time interval t = 1.50 s to t = 4s (b) Find the average velocity in the time interval t = 1.00 s to t = 6.00s (c) Determine the instantaneous velocity at t = 2.00 s by measuring the slope of the tangent line shown in the graph. (d) At what value of t is the velocity zero x (m) -t (s) 5 -12 -10 -8 -6 4 2- 0. 9 3 6arrow_forwardAn object is moving with constant non-zero velocity in the + x direction. The position versus time graph of this object is a horizontal straight line. a vertical straight line. a straight line making an angle with the time axis. a parabolic curve.arrow_forward
- A student begins at rest and then walks north at a speed of v1 = 0.55 m/s. The student then turns south and walks at a speed of v2 = 0.53 m/s. Take north to be the positive direction. If the student travels in the stated directions for 30.0 seconds at speed v1 and for 20.0 seconds at speed v2, what is the net displacement, in meters, during the trip? If it takes the student 5.0 s to reach the speed v1 from rest, what is the magnitude of the student’s average acceleration, in meters per second squared, during that time?arrow_forwardA particle moving along the x axis has acceleration in the x direction as function of the time given by a(t) = 6t²-t. For t=0 the initial velocity is 6.0 m/s. Determine the velocity when t = 1.0 s. Write here your answer. Include the units.arrow_forwardI have an unusual question. I am getting confused with my graphs. I completed a few graphs and one in particular, a displacement-time graph was presented as displacement (cm) and time (s). Velocity is usually always written as m/s. Per the graph, would I comply and fill in my Velocity as cm/s or m/s?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Speed Distance Time | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=EGqpLug-sDk;License: Standard YouTube License, CC-BY