Concept explainers
(a)
The time taken by a ball released from an airplane to hit the ground.

Answer to Problem 69QAP
The ball hits the ground after 9.24 s.
Explanation of Solution
Given:
The speed of the airplane when the ball is released
Angle made by the plane to the horizontal
Height of the airplane above the ground when the ball is released
Formula used:
The time of flight of the ball is determined using the equation for the vertical motion of the ball.
Here,
Calculation:
When the airplane releases the ball, the ball has the velocity of the airplane. Its speed is 35.3 m/s and it is released at an angle 30.0o to the horizontal.
Assume the origin to be located at the point where the ball is released. With the x axis parallel to the ground and the + y axis directed upwards.
The ball travels a parabolic path and lands on the ground at point B. Its vertical displacement when it lands on the ground, is equal to
This is shown in the diagram below.
Calculate the vertical component of the ball's velocity.
The ball falls under the action of the gravitational force. Hence the acceleration acting on the ball in the vertical direction is the acceleration of free fall.
In equation (1), substitute
Solve the quadratic equation to determine t.
Taking the positive root,
Conclusion:
Thus, the ball hits the ground after 9.24 s.
(b)
The maximum height of the ball from the ground.

Answer to Problem 69QAP
The ball reaches a maximum height of 270.9 m from the ground.
Explanation of Solution
Given:
The speed of the airplane when the ball is released
Angle made by the plane to the horizontal
Height of the airplane above the ground when the ball is released
Formula used:
The maximum height reached by the ball can be calculated using the equation of motion,
Here, vy is vertical component of the ball's velocity at the position y,
The maximum height h reached by the ball, when measured from the ground is given by,
Calculation:
The vertical component of the ball's velocity reduces as it moves up, due to the action of the gravitational force. When the vertical component reaches a value zero, the ball can no longer make an upward displacement, hence after this point it starts its motion in the downward direction.
Therefore, at maximum height,
In equation (2) substitute 0 m/s for vy,
This point is 15.89 m above the point of projection. Therefore, its height from the ground is given by,
Conclusion:
Thus, the ball reaches a maximum height of 270.9 m from the ground.
(c)
The horizontal distance traveled by the ball from the point of release to the ground.

Answer to Problem 69QAP
The ball travels a horizontal distance of 282.5 m.
Explanation of Solution
Given:
The speed of the airplane when the ball is released
Angle made by the plane to the horizontal
Height of the airplane above the ground when the ball is released
Time of flight of the ball
Formula used:
The horizontal distance traveled by the ball is calculated using the equation
Here,
Calculation:
The ball makes a vertical displacement of
Calculate the horizontal component of the ball's velocity.
Substitute the values of v0x, ax and t in equation (3) and solve for
Conclusion:
Thus, the ball travels a horizontal distance of 282.5 m.
Want to see more full solutions like this?
Chapter 3 Solutions
COLLEGE PHYSICS-ACHIEVE AC (1-TERM)
- Small ice cubes, each of mass 5.60 g, slide down a frictionless track in a steady stream, as shown in the figure below. Starting from rest, each cube moves down through a net vertical distance of h = 1.50 m and leaves the bottom end of the track at an angle of 40.0° above the horizontal. At the highest point of its subsequent trajectory, the cube strikes a vertical wall and rebounds with half the speed it had upon impact. If 10 cubes strike the wall per second, what average force is exerted upon the wall? N ---direction--- ▾ ---direction--- to the top to the bottom to the left to the right 1.50 m 40.0°arrow_forwardThe magnitude of the net force exerted in the x direction on a 3.00-kg particle varies in time as shown in the figure below. F(N) 4 3 A 2 t(s) 1 2 3 45 (a) Find the impulse of the force over the 5.00-s time interval. == N⚫s (b) Find the final velocity the particle attains if it is originally at rest. m/s (c) Find its final velocity if its original velocity is -3.50 î m/s. V₁ m/s (d) Find the average force exerted on the particle for the time interval between 0 and 5.00 s. = avg Narrow_forward••63 SSM www In the circuit of Fig. 27-65, 8 = 1.2 kV, C = 6.5 µF, R₁ S R₂ R3 800 C H R₁ = R₂ = R3 = 0.73 MQ. With C completely uncharged, switch S is suddenly closed (at t = 0). At t = 0, what are (a) current i̟ in resistor 1, (b) current 2 in resistor 2, and (c) current i3 in resistor 3? At t = ∞o (that is, after many time constants), what are (d) i₁, (e) i₂, and (f) iz? What is the potential difference V2 across resistor 2 at (g) t = 0 and (h) t = ∞o? (i) Sketch V2 versus t between these two extreme times. Figure 27-65 Problem 63.arrow_forward
- Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. Thor's escape velocity is 33532.9 rad/s, the angular velocity is 8055.5 rad/s^2. While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? the hammer has a total mass of 20.0kg.arrow_forwardIf the room’s radius is 16.2 m, at what minimum linear speed does Quicksilver need to run to stay on the walls without sliding down? Assume the coefficient of friction between Quicksilver and the wall is 0.236.arrow_forwardIn the comics Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. A) If the distance from the end of the strap to the center of the hammer is 0.334 m, what angular velocity does Thor need to spin his hammer at to reach escape velocity? b) If the hammer starts from rest what angular acceleration does Thor need to reach that angular velocity in 4.16 s? c) While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? The hammer has a total mass of 20.0kg.arrow_forward
- The car goes from driving straight to spinning at 10.6 rev/min in 0.257 s with a radius of 12.2 m. The angular accleration is 4.28 rad/s^2. During this flip Barbie stays firmly seated in the car’s seat. Barbie has a mass of 58.0 kg, what is her normal force at the top of the loop?arrow_forwardConsider a hoop of radius R and mass M rolling without slipping. Which form of kinetic energy is larger, translational or rotational?arrow_forwardA roller-coaster vehicle has a mass of 571 kg when fully loaded with passengers (see figure). A) If the vehicle has a speed of 22.5 m/s at point A, what is the force of the track on the vehicle at this point? B) What is the maximum speed the vehicle can have at point B, in order for gravity to hold it on the track?arrow_forward
- This one wheeled motorcycle’s wheel maximum angular velocity was about 430 rev/min. Given that it’s radius was 0.920 m, what was the largest linear velocity of the monowheel?The monowheel could not accelerate fast or the rider would start spinning inside (this is called "gerbiling"). The maximum angular acceleration was 10.9 rad/s2. How long, in seconds, would it take it to hit maximum speed from rest?arrow_forwardIf points a and b are connected by a wire with negligible resistance, find the magnitude of the current in the 12.0 V battery.arrow_forwardConsider the two pucks shown in the figure. As they move towards each other, the momentum of each puck is equal in magnitude and opposite in direction. Given that v kinetic energy of the system is converted to internal energy? 30.0° 130.0 = green 11.0 m/s, and m blue is 25.0% greater than m 'green' what are the final speeds of each puck (in m/s), if 1½-½ t thearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





