College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
thumb_up100%
Chapter 3, Problem 67PE
An ice hockey player is moving at 8.00 m/s when he hits the puck toward the goal. The speed of the puck relative to the player is 29.0 m/s. The line between the center of the goal and the player makes a 90.0° angle relative to his path as shown in Figure 3.65. What angle must the puck's velocity make relative to the player (in his frame of reference) to hit the center of the goal?
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
The law of reflection applies to
Question 14Select one:
a.
specular reflection
b.
irregular reflection
c.
All of these
d.
diffuse reflection
According to your book "normal" human body temperature is considered to be ________?
Select one:
a. none of these
b.
98.6°C
c.
37°C
d.
100°C
Problem Seven. A football
receiver
running
straight
downfield at 5.60 m/s is 11.5 m
in front of the quarterback when
a pass is thrown downfield at an
angle of 35.0° above the
horizon.
8.) If the receiver never changes speed and the ball is caught at the same height from which it was
thrown, find the distance between the quarterback and the receiver when the catch is made.
(A) 21.3
(B) 17.8
(C) 18.8
(D) 19.9
(E) 67.5
Chapter 3 Solutions
College Physics
Ch. 3 - Which of the following is a vector: a person's...Ch. 3 - Give a specific example of a vector, stating its...Ch. 3 - What do vectors and scalars have in common? How do...Ch. 3 - Two calipers in a national park hike from their...Ch. 3 - If an airplane plot is told to fly 123 km in a...Ch. 3 - Suppose you take two steps A and B (that is, two...Ch. 3 - Explain why it is not possible to add a scalar to...Ch. 3 - If you take two steps of different sizes, can you...Ch. 3 - Suppose you add two vectors A and B. What relative...Ch. 3 - Give an example of a nonzero vector that has a...
Ch. 3 - Explain why a vector cannot have a component...Ch. 3 - If the vectors A and B are perpendicular, what is...Ch. 3 - Answer the following questions for projectile...Ch. 3 - Answer the following questions for projectile...Ch. 3 - For a fixed initial speed, the range of a...Ch. 3 - During a lecture demonstration, a professor places...Ch. 3 - What frame or frames of reference do you...Ch. 3 - A basketball player dribbling clown the court...Ch. 3 - If someone riding in the back of a pickup truck...Ch. 3 - The hat of a jogger running at constant velocity...Ch. 3 - A clod of dirt falls from the bed of a moving...Ch. 3 - Find the following for path A in Figure 3.54: (a)...Ch. 3 - Find the following for path B in Figure 3.54: (a)...Ch. 3 - Find the north and east components of the...Ch. 3 - Suppose you walk 18.0 m straight west and then...Ch. 3 - Suppose you first walk 12.0 m in a direction 20°...Ch. 3 - Repeat the problem above, but reverse the order of...Ch. 3 - (a) Repeat the problem two problems prior, but for...Ch. 3 - Show that the order of addition of three vectors...Ch. 3 - Show that the sum of the vectors discussed in...Ch. 3 - Find the magnitudes of velocity vAand vBin figure...Ch. 3 - Find the components of vtot along the x- and...Ch. 3 - Find the components of vtot along a set of...Ch. 3 - Find the following for path C in Figure 3.58: (a)...Ch. 3 - Find the following for path D in Figure 3.58: (a)...Ch. 3 - Find the north and east components of the...Ch. 3 - Solve the following problem using analytical...Ch. 3 - Repeat Exercise 3.16 using analytical techniques,...Ch. 3 - You drive 7.50 km in a straight line in a...Ch. 3 - Do Exercise 3.16 again using analytical techniques...Ch. 3 - A new landowner has a triangular piece of flat...Ch. 3 - You fly 32.0 km in a straight line in still air in...Ch. 3 - A farmer wants to fence off his four-sided plot of...Ch. 3 - In an attempt to escape his island, Gilligan...Ch. 3 - Suppose a pilot flies 40.0 km in a direction 60°...Ch. 3 - A projectile is launched at ground level with an...Ch. 3 - A ball is kicked with an initial velocity of 16...Ch. 3 - A ball is thrown horizontally from the top of a...Ch. 3 - (a) A daredevil is attempting to jump his...Ch. 3 - An archer shoots an arrow at a 75.0 m distant...Ch. 3 - A rugby player passes the ball 7.00 m across the...Ch. 3 - Verify the ranges for the projectiles in Figure...Ch. 3 - Verity the ranges shown for the projectiles in...Ch. 3 - The cannon on a battleship can fire a shell a...Ch. 3 - An arrow is shot from a height of 1.5 m toward a...Ch. 3 - In the standing broad jump, one squats and then...Ch. 3 - The world long jump record is 8.95 m (Mike Powell,...Ch. 3 - Serving at a speed of 170 km/h, a tennis player...Ch. 3 - A football quarterback is moving straight backward...Ch. 3 - Gun sights are adjusted to aim high to compensate...Ch. 3 - An eagle is flying horizontally at a speed of 3.00...Ch. 3 - An owl is carrying a mouse to the chicks in its...Ch. 3 - Suppose a soccer player kicks the ball from a...Ch. 3 - Can a goalkeeper at her/ his goal kick a soccer...Ch. 3 - The free throw line in basketball is 4.57 m (15...Ch. 3 - In 2007, Michael Carter (U.S.) set a world record...Ch. 3 - A basketball player is running at 5.00 m/s...Ch. 3 - A football player punts the ball at a 45.0° angle....Ch. 3 - Prove that the trajectory of a projectile is...Ch. 3 - Derive R=v02sin20g for the range of a projectile...Ch. 3 - Unreasonable Results (a) Find the maximum range of...Ch. 3 - Construct Your Own Problem Consider a ball tossed...Ch. 3 - Bryan Allen pedaled a human-powered aircraft...Ch. 3 - A seagull flies at a velocity of 9.00 m/s straight...Ch. 3 - Near the end of a marathon race, the first two...Ch. 3 - Verity that the coin dropped by the airline...Ch. 3 - A football quarterback is moving straight backward...Ch. 3 - A ship sets sail from Rotterdam, The Netherlands,...Ch. 3 - (a) A jet airplane flying from Darwin, Australia,...Ch. 3 - (a) In what direction would the ship in Exercise...Ch. 3 - (a) Another airplane is flying in a jet stream...Ch. 3 - A sandal is dropped from the top of a 15.0-m-high...Ch. 3 - The velocity of the wind relative to the water is...Ch. 3 - The great astronomer Edwin Hubble discovered that...Ch. 3 - (a) Use the distance and velocity data in Figure...Ch. 3 - An athlete crosses a 25-m-wide river by swimming...Ch. 3 - A ship sailing in the Gulf Stream is heading 25.0°...Ch. 3 - An ice hockey player is moving at 8.00 m/s when he...Ch. 3 - Unreasonable Results Suppose you wish to shoot...Ch. 3 - Unreasonable Results A commercial airplane has an...Ch. 3 - Construct Your Own Problem Consider an airplane...Ch. 3 - Prob. 1TPCh. 3 - Prob. 2TPCh. 3 - Prob. 3TPCh. 3 - Prob. 4TPCh. 3 - Prob. 5TPCh. 3 - Prob. 6TP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Microphylls are found in which plant group? (A) lycophytes (B) liverworts (C) ferns (D) hornworts
Campbell Biology (11th Edition)
Your bore cells, muscle cells, and skin cells look different because a. different kinds of genes are present in...
Campbell Essential Biology (7th Edition)
WHAT IF? As a cell begins the process of dividing, its chromosomes become shorter, thicker, and individually vi...
Campbell Biology in Focus (2nd Edition)
5. When the phenotype of heterozygotes is intermediate between the phenotypes of the two homozygotes, this patt...
Biology: Life on Earth (11th Edition)
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- When two bar magnets are near each other, the north pole of one of the magnets experiences what type of force from the other magnet? 1. both an attractive force and a repulsive force 2. a Coulomb force 3. only an attractive force 4. only a repulsive forcearrow_forwardWhat can be said about the electric force between two charged particles? It varies as 1/r. It depends only on the magnitudes of the charges. It is much, much greater than the attractive gravitational force. It is repulsive for unlike charges.arrow_forwardA piece of copper originally 305mm long is pulled in tension with a stress of 276MPa. If the deformation is elastic, what will be the resultant elongation. E for copper is 110Gpaarrow_forward
- Please solve and answer the problem correctly please. Be sure to give explanations on each step and write neatly please. Thank you!!arrow_forwardIn the figures, the masses are hung from an elevator ceiling. Assume the velocity of the elevator is constant. Find the tensions in the ropes (in N) for each case. Note that 0₁ = 35.0°, 0₂ = 55.0°, 03 = 60.0°, m₁ = 3.00 kg, and m2 = 7.00 kg. (Due to the nature of this problem, do not use rounded intermediate values-including answers submitted in WebAssign-in your calculations.) (a) Τι WY NY MY T3 e₁ T₁ = N = N = N (b) 18 Τι = Τι T3 = || || || = T T Ts m₂ N N N 02 T₂ T3 m₁arrow_forwardYou are working with a movie director and investigating a scene with a cowboy sliding off a tree limb and falling onto the saddle of a moving horse. The distance of the fall is several meters, and the calculation shows a high probability of injury to the cowboy from the stunt. Let's look at a simpler situation. Suppose the director asks you to have the cowboy step off a platform 2.55 m off the ground and land on his feet on the ground. The cowboy keeps his legs straight as he falls, but then bends at the knees as soon as he touches the ground. This allows the center of mass of his body to move through a distance of 0.660 m before his body comes to rest. (Center of mass will be formally defined in Linear Momentum and Collisions.) You assume this motion to be under constant acceleration of the center of mass of his body. To assess the degree of danger to the cowboy in this stunt, you wish to calculate the average force upward on his body from the ground, as a multiple of the cowboy's…arrow_forward
- A box of mass m = 2.00 kg is released from rest at the top of an inclined plane as seen in the figure. The box starts out at height h =0.200 m above the top of the table, the table height is H = 2.00 m, and 0 = 41.0°. H m (a) What is the acceleration (in m/s²) of the box while it slides down the incline? m/s² (b) What is the speed (in m/s) of the box when it leaves the incline? m/s (c) At what horizontal distance (in m) from the end of the table will the box hit the ground? m (d) How long (in s) from when the box is released does it hit the ground? S (e) Does the box's mass affect any of your above answers? Yes Noarrow_forward(a) A sphere made of rubber has a density of 0.940 g/cm³ and a radius of 7.00 cm. It falls through air of density 1.20 kg/m³ and has a drag coefficient of 0.500. What is its terminal speed (in m/s)? m/s (b) From what height (in m) would the sphere have to be dropped to reach this speed if it fell without air resistance? marrow_forwardThe systems shown below are in equilibrium. If the spring scales are calibrated in newtons, what do they read? Ignore the masses of the pulleys and strings and assume the pulleys and the incline are frictionless. (Let m = 2.19 kg and € = 29.0°.) scale in (a) N N scale in (b) scale in (c) N scale in (d) N a C m m m m m b d m Ꮎarrow_forward
- An elevator car has two equal masses attached to the ceiling as shown. (Assume m = 3.10 kg.) m m T₁ T2 (a) The elevator ascends with an acceleration of magnitude 2.00 m/s². What are the tensions in the two strings? (Enter your answers in N.) = N T₁ Τι = N (b) The maximum tension the strings can withstand is 78.8 N. What is the maximum acceleration of the elevator so that a string does not break? (Enter the magnitude in m/s².) m/s²arrow_forward(a) At what speed (in m/s) will a proton move in a circular path of the same radius as an electron that travels at 7.85 x 100 m/s perpendicular to the Earth's magnetic field at an altitude where the field strength is 1.20 x 10-5 T? 4.27e3 m/s (b) What would the radius (in m) of the path be if the proton had the same speed as the electron? 7.85e6 x m (c) What would the radius (in m) be if the proton had the same kinetic energy as the electron? 195.38 x m (d) What would the radius (in m) be if the proton had the same momentum as the electron? 3.7205 marrow_forward! Required information The block shown is made of a magnesium alloy, for which E = 45 GPa and v = 0.35. Know that σx = -185 MPa. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. 25 mm B D 40 mm 100 mm Determine the magnitude of Oy for which the change in the height of the block will be zero. The magnitude of Oy is MPa.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY