A 10-cm-thick vall is to be constructed with 2.5-rn-long wood studs ( k = 0.11 W/m .K and that have a cross section of 10 cm × 1 0 cm . and At some point the builder ran out of those studs and started using pairs of 2.5-rn-long wood studs that have a cross section of 5 cm × 1 0 cm nailed to each other instead. The manganese steel nails ( k = 50 W/m .K) and are 10 cm long and have a diameter of 0.4 cm. A total of 50 nails are used to connect the two studs, which are mounted to the wall such that the nails cross the wall. The temperature difference between the inner and outer surfaces of the wall is 8°C. Assuming the thennal contact resistance between the two layers to be negligible, determine the rate of heat transfer (a) through a solid stud and (b) through a stud pair of equal length and width nailed to each other. (c) Also determine the effective conductivity of the nailed stud pair.
A 10-cm-thick vall is to be constructed with 2.5-rn-long wood studs ( k = 0.11 W/m .K and that have a cross section of 10 cm × 1 0 cm . and At some point the builder ran out of those studs and started using pairs of 2.5-rn-long wood studs that have a cross section of 5 cm × 1 0 cm nailed to each other instead. The manganese steel nails ( k = 50 W/m .K) and are 10 cm long and have a diameter of 0.4 cm. A total of 50 nails are used to connect the two studs, which are mounted to the wall such that the nails cross the wall. The temperature difference between the inner and outer surfaces of the wall is 8°C. Assuming the thennal contact resistance between the two layers to be negligible, determine the rate of heat transfer (a) through a solid stud and (b) through a stud pair of equal length and width nailed to each other. (c) Also determine the effective conductivity of the nailed stud pair.
Solution Summary: The author explains the rate of heat transfer through the solid stud.
A 10-cm-thick vall is to be constructed with 2.5-rn-long wood studs
(
k
=
0.11
W/m
.K
and that have a cross section of
10 cm
×
1 0 cm
.
and At some point the builder ran out of those studs and started using pairs of 2.5-rn-long wood studs that have a cross section of
5 cm
×
1 0 cm
nailed to each other instead. The manganese steel nails
(
k
=
50
W/m
.K)
and are 10 cm long and have a diameter of 0.4 cm. A total of 50 nails are used to connect the two studs, which are mounted to the wall such that the nails cross the wall. The temperature difference between the inner and outer surfaces of the wall is 8°C. Assuming the thennal contact resistance between the two layers to be negligible, determine the rate of heat transfer (a) through a solid stud and (b) through a stud pair of equal length and width nailed to each other. (c) Also determine the effective conductivity of the nailed stud pair.
Problem (17): water flowing in an open channel of a rectangular cross-section with width (b) transitions from a
mild slope to a steep slope (i.e., from subcritical to supercritical flow) with normal water depths of (y₁) and
(y2), respectively.
Given the values of y₁ [m], y₂ [m], and b [m], calculate the discharge in the channel (Q) in [Lit/s].
Givens:
y1 = 4.112 m
y2 =
0.387 m
b = 0.942 m
Answers:
( 1 ) 1880.186 lit/s
( 2 ) 4042.945 lit/s
( 3 ) 2553.11 lit/s
( 4 ) 3130.448 lit/s
Problem (14): A pump is being used to lift water from an underground
tank through a pipe of diameter (d) at discharge (Q). The total head
loss until the pump entrance can be calculated as (h₁ = K[V²/2g]), h
where (V) is the flow velocity in the pipe. The elevation difference
between the pump and tank surface is (h).
Given the values of h [cm], d [cm], and K [-], calculate the maximum
discharge Q [Lit/s] beyond which cavitation would take place at the
pump entrance. Assume Turbulent flow conditions.
Givens:
h = 120.31 cm
d = 14.455 cm
K = 8.976
Q
Answers:
(1) 94.917 lit/s
(2) 49.048 lit/s
( 3 ) 80.722 lit/s
68.588 lit/s
4
Problem (13): A pump is being used to lift water from the bottom
tank to the top tank in a galvanized iron pipe at a discharge (Q).
The length and diameter of the pipe section from the bottom tank
to the pump are (L₁) and (d₁), respectively. The length and
diameter of the pipe section from the pump to the top tank are
(L2) and (d2), respectively.
Given the values of Q [L/s], L₁ [m], d₁ [m], L₂ [m], d₂ [m],
calculate total head loss due to friction (i.e., major loss) in the
pipe (hmajor-loss) in [cm].
Givens:
L₁,d₁
Pump
L₂,d2
오
0.533 lit/s
L1 =
6920.729 m
d1 =
1.065 m
L2 =
70.946 m
d2
0.072 m
Answers:
(1)
3.069 cm
(2) 3.914 cm
( 3 ) 2.519 cm
( 4 ) 1.855 cm
TABLE 8.1
Equivalent Roughness for New Pipes
Pipe
Riveted steel
Concrete
Wood stave
Cast iron
Galvanized iron
Equivalent Roughness, &
Feet
Millimeters
0.003-0.03 0.9-9.0
0.001-0.01 0.3-3.0
0.0006-0.003 0.18-0.9
0.00085
0.26
0.0005
0.15
0.045
0.000005
0.0015
0.0 (smooth) 0.0 (smooth)
Commercial steel or wrought iron 0.00015
Drawn…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.