Concept explainers
(a)
Interpretation:
The shape of a molecule whose central atom is surrounded by two regions of electron density should be determined.
Concept Introduction:
The shape of molecule is determined by electron density around central atom as it is suggested by VSEPR theory.
According to VSEPR theory we can determine the shape of a molecule by following the given steps:
- First identify the number of bonded atoms to the central atom and count the number of lone pair of electrons on central atom. Add these.
- The sum obtained above gives us idea about the electronic geometry in a molecule. For example, if it is two then the electron geometry will be linear, if it is three the geometry will be trigonal planar, four the geometry will be tetrahedral, five the geometry will be trigonal bipyramidal, six the geometry will be octahedral.
- Now for molecular geometry we have to consider the number of lone pair of electrons.
- The molecular geometry depends upon the repulsion order between electron pairs which is Bond-bond < lone pair −bond pair < lone pair-lone pair.
(b)
Interpretation:
The shape of a molecule whose central atom is surrounded by three regions of electron density should be determined.
Concept Introduction:
The shape of molecule is determined by electron density around central atom as it is suggested by VSEPR theory.
According to VSEPR theory we can determine the shape of a molecule by following the given steps.
- First identify the number of bonded atoms to the central atom and count the number of lone pair of electrons on central atom. Add these.
- The sum obtained above gives us idea about the electronic geometry in a molecule. For example if it is two then the electron geometry will be linear, if it is three the geometry will be trigonal planar, four the geometry will be tetrahedral, five the geometry will be trigonal bipyramidal, six the geometry will be octahedral.
- Now for molecular geometry we have to consider the number of lone pair of electrons.
- The molecular geometry depends upon the repulsion order between electron pairs which is Bond-bond < lone pair −bond pair < lone pair-lone pair.
(b)
Interpretation:
The shape of a molecule whose central atom is surrounded by four regions of electron density should be determined.
Concept Introduction:
The shape of molecule is determined by electron density around central atom as it is suggested by VSEPR theory.
According to VSEPR theory we can determine the shape of a molecule by following the given steps.
- First identify the number of bonded atoms to the central atom and count the number of lone pair of electrons on central atom. Add these.
- The sum obtained above gives us idea about the electronic geometry in a molecule. For example if it is two then the electron geometry will be linear, if it is three the geometry will be trigonal planar, four the geometry will be tetrahedral, five the geometry will be trigonal bipyramidal, six the geometry will be octahedral.
- Now for molecular geometry we have to consider the number of lone pair of electrons.
- The molecular geometry depends upon the repulsion order between electron pairs which is Bond-bond < lone pair −bond pair < lone pair-lone pair.
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
EP INTRO.TO GENERAL,ORGANIC...-OWL ACCE
- achieve.macmillanlearning.com Canvas EA eac h Hulu YouTube G 3 methyl cyclobutanol - Google Search Ranking Phenol Acidity Course -236 - Organic Chemistry - Mac... ← Assessment Completed 10 of 22 Questions 1 + Netflix paramount plus chem hw Galdehyde reaction with grignard reagent... b My Questions | bartleby M Inbox - chenteislegit@gmail.com - Gmail Due: Fri, Jan 31 Resources Solution Penalized ? Hint Submit Answer Use retrosynthetic analysis to suggest two paths to synthesize 2-methyl-3-hexanol using the Grignard reaction. (Click and drag the appropriate image to the correct position in the reactions.) Route 1 Aldehyde 1 or +98 Aldehyde 2 Route 2 Q6 +100 Solved in 1 attempt Q7 +95 Solved in 2 attempts Q8 +98 Unlimited attempts possible + + Grignard 1 OH H3O+ Grignard 2 Answer Bank Q9 +90 MgBr Unlimited attempts possible CH3CH2CH2MgBr Q10 Unlimited attempts Q11 ? ? +100 in 1 attempt 2-methyl-3-hexanol CH3CH2MgBr H H о H Attempt 3arrow_forward2) (4 pt) After the reaction was completed, the student collected the following data. Crude product data is the data collected after the reaction is finished, but before the product is purified. "Pure" product data is the data collected after attempted purification using recrystallization. Student B's data: Crude product data "Pure" product data after recrystallization Crude mass: 0.93 g grey solid Crude mp: 96-106 °C Crude % yield: Pure mass: 0.39 g white solid Pure mp: 111-113 °C Pure % yield: a) Calculate the crude and pure percent yields for the student's reaction. b) Summarize what is indicated by the crude and pure melting points.arrow_forwardDon't used hand raitingarrow_forward
- A DEPT NMR spectrum is shown for a molecule with the molecular formula of C5H12O. Draw the structure that best fits this data. 200 180 160 140 120 100 一盆 00 40 8- 20 ppm 0 Qarrow_forwardDon't used hand raitingarrow_forwardShown below is the major resonance structure for a molecule. Draw the second best resonance structure of the molecule. Include all non-zero formal charges. H. H. +N=C H H H Cl: Click and drag to start drawing a structure. : ? g B S olo Ar B Karrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning