The number of moles of compound is given. By using the number of moles, the mass of nitrogen in each compound given in exercise 51 is to be determined. Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons. Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound. The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it. The amount of substance containing 12 g of pure carbon is called a mole. One mole of substance always contains 6 .022 × 10 23 atoms. Hence, ( 6 .022 × 10 23 atoms ) ( 12 u 1 atom ) = 12 g ⇒ 1 u = 1 6 .022 × 10 23 g To determine : The mass of nitrogen ( N ) in 5 .00 moles of NH 3 .
The number of moles of compound is given. By using the number of moles, the mass of nitrogen in each compound given in exercise 51 is to be determined. Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons. Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound. The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it. The amount of substance containing 12 g of pure carbon is called a mole. One mole of substance always contains 6 .022 × 10 23 atoms. Hence, ( 6 .022 × 10 23 atoms ) ( 12 u 1 atom ) = 12 g ⇒ 1 u = 1 6 .022 × 10 23 g To determine : The mass of nitrogen ( N ) in 5 .00 moles of NH 3 .
Interpretation: The number of moles of compound is given. By using the number of moles, the mass of nitrogen in each compound given in exercise 51 is to be determined.
Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons.
Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound.
The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it.
The amount of substance containing
12g of pure carbon is called a mole. One mole of substance always contains
6.022×1023 atoms.
Hence,
(6.022×1023atoms)(12u1atom)=12g⇒1u=16.022×1023g
To determine: The mass of nitrogen
(N) in
5.00 moles of
NH3.
(b)
Interpretation Introduction
Interpretation: The number of moles of compound is given. By using the number of moles, the mass of nitrogen in each compound given in exercise 51 is to be determined.
Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons.
Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound.
The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it.
The amount of substance containing
12g of pure carbon is called a mole. One mole of substance always contains
6.022×1023 atoms.
Hence,
(6.022×1023atoms)(12u1atom)=12g⇒1u=16.022×1023g
To determine: The mass of nitrogen
(N) in
5.00 moles of
N2H4.
(c)
Interpretation Introduction
Interpretation: The number of moles of compound is given. By using the number of moles, the mass of nitrogen in each compound given in exercise 51 is to be determined.
Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons.
Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound.
The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it.
The amount of substance containing
12g of pure carbon is called a mole. One mole of substance always contains
6.022×1023 atoms.
Hence,
(6.022×1023atoms)(12u1atom)=12g⇒1u=16.022×1023g
To determine: The mass of nitrogen
(N) in
5.00 moles of
(NH4)2Cr2O7.
Bookmarks
Profiles Tab Window Help
Chemical Formula - Aktiv Che X
+
→ C
11
a
app.aktiv.com
Google Chrome isn't your default browser Set as default
Question 12 of 16
Q Fri Feb 2
Verify it's you
New Chrome availabl-
Write the balanced molecular chemical equation for the reaction in aqueous solution for
mercury(I) nitrate and chromium(VI) sulfate. If no reaction occurs, simply write only NR. Be
sure to include the proper phases for all species within the reaction.
3 Hg(NO3)2(aq) + Cг2(SO4)3(aq) → 3 Hg₂SO (s) + 2 Cr(NO3), (aq)
ean Ui
mate co
ence an
climate
bility inc
ulnerabili
women,
main critic
CLIMATE-INI
ernational
+
10
O
2
W
FEB
1
+
4-
3-
2-
2
2
(
3
4
NS
28
2
ty
56
+
2+
3+
4+
7
8
9 0
5
(s)
(1)
Ch
O
8
9
(g) (aq)
Hg
NR
CI
Cr
x H₂O
A
80
Q
A
DII
A
F2
F3
FA
F5
F6
F7
F8
F9
#3
EA
$
do 50
%
6
CO
&
7
E
R
T
Y
U
8
(
9
0
F10
34
F11
川
F12
Subr
+
delete
0
{
P
}
Deducing the reactants of a Diels-Alder reaction
n the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one
step, by moderately heating the reactants?
?
Δ
• If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any
arrangement you like.
• If your answer is no, check the box under the drawing area instead.
Explanation Check
Click and drag to start drawing a structure.
>
Predict the major products of the following organic reaction:
+
Some important notes:
A
?
• Draw the major product, or products, of the reaction in the drawing area below.
• If there aren't any products, because no reaction will take place, check the box below the drawing area instead.
• Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are
enantiomers.
Explanation
Check
Click and drag to start drawing a structure.