PHYS 212 FOR SCI+ENG W/MAST PHYS >ICP<
1st Edition
ISBN: 9781323834831
Author: Knight
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 45EAP
FIGURE P3.45 shows four electric charges located at the corners of a rectangle. Like charges, you will recall, repel each other while opposite charges attract. Charge B exerts a repulsive force (directly away from B) on charge A of 3.0 N. Charge C exerts an attractive force (directly toward C) on charge A of 6.0 N. Finally, charge D exerts an attractive force of 2.0 N on charge A. Assuming that forces are vectors, what are the magnitude and direction of the net force exerted on charge A?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Three positive charges are at the vertices of an equilateral triangle that measures 1 cm on a side . One charge is 6.7 nC, and the other two charges are both 2.0 nC. What is the magnitude of the net electric force on the 6.7 nC charge due to the other two charges?
Hint: Draw a good free body diagram for the 6.7 nC charge. Sketch the vector forces acting on it and sum their components in both directions.
=
Two charged particles, 9₁ and 92, are located on the x-axis, with q₁ at the origin and q2 initially at X₁ 13.3 mm. In this configuration, q₁ exerts a repulsive force of 2.62 µN on 92. Particle 92 is then
moved to X2
17.0 mm. What is the force (magnitude and direction) that q₂ exerts on q₁ at this new location? (Give the magnitude in µN.)
magnitude
μN
direction
---Select--- ↑
What is the magnitude of the electric force?
Chapter 3 Solutions
PHYS 212 FOR SCI+ENG W/MAST PHYS >ICP<
Ch. 3 - Can the magnitude of the displacement vector be...Ch. 3 - If C=A+B, can C = A + B? Can C>A + B? For each,...Ch. 3 - If C=A+B can C = 0? Can C< O? For each, show how...Ch. 3 - Is it possible to add a scalar to a vector? If so,...Ch. 3 - How would you define the zero vector ?Ch. 3 - Can a vector have a component equal to zero and...Ch. 3 - Can a vector have zero magnitude if one of its...Ch. 3 - Suppose two vectors have unequal magnitudes. Can...Ch. 3 - Are the following statements true or false?...Ch. 3 - I. Trace the vectors in FIGURE EX3.1 onto your...
Ch. 3 - Trace the vectors in FIGURE EX3.2 onto your paper....Ch. 3 - a. What are the x- and v-components of vector E...Ch. 3 - A velocity vector 40° below the positive x-axis...Ch. 3 - A position vector in the first quadrant has an...Ch. 3 - Draw each of the following vectors. Then find its...Ch. 3 - Draw each of the following vectors. Then find its...Ch. 3 - Let C = (3.15 m, 15° above the negative x-axis)...Ch. 3 - A runner is training for an upcoming marathon by...Ch. 3 - Draw each of the following vectors, label an angle...Ch. 3 - Draw each of the following vectors, label an angle...Ch. 3 - Let a. Write Vector Cin component form. b. Draw a...Ch. 3 - a. Write vector Cin component form. b. Draw a...Ch. 3 - a. Write vector Din component form. b. Draw a...Ch. 3 - Let A = 4î - 2j, B = -3î + 5j, and E = 2 A + 3 B...Ch. 3 - Let A = 41 - 2j, B = -3î + 5j, and F = A -4 B . a....Ch. 3 - 17. Let = 2î + 3? and = 2î — 2?. Find the...Ch. 3 - Prob. 18EAPCh. 3 - 19. What are the x– and y- components of the...Ch. 3 - 20. For the three vectors shown Figure EX3.20, + +...Ch. 3 - Prob. 21EAPCh. 3 - 22. Let = (3.0 m, 20° south of east), = (2.0 m,...Ch. 3 - The position of a particle as a function of time...Ch. 3 - a. What is the angle between vectors E and F in...Ch. 3 - FIGURE P3.25 shows vectors A and B . Find vector C...Ch. 3 - Prob. 26EAPCh. 3 - Prob. 27EAPCh. 3 - Prob. 28EAPCh. 3 - The minute hand on a watch is 2.0 cm in length....Ch. 3 - Prob. 30EAPCh. 3 - Ruth sets out to visit her friend Ward, who lives...Ch. 3 - A cannon tilted upward at 30° fires a cannonball...Ch. 3 - Prob. 33EAPCh. 3 - Prob. 34EAPCh. 3 - A pine cone falls straight down from a pine tree...Ch. 3 - Prob. 36EAPCh. 3 - Prob. 37EAPCh. 3 - Your neighbor Paul has rented a truck with a...Ch. 3 - Tom is climbing a 3.0-m-long ladder that leans...Ch. 3 - The treasure map in FIGURE P3.40 gives the...Ch. 3 - The bacterium E. coli is a single-cell organism...Ch. 3 - A flock of ducks is trying to migrate south for...Ch. 3 - FIGURE P3.43 shows three ropes tied together in a...Ch. 3 - I Four forces are exerted on the object shown in...Ch. 3 - FIGURE P3.45 shows four electric charges located...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (Figure 1) shows four electrical charges located at the corners of a rectangle. Like charges, you will recall, repel each other while opposite charges attract. Charge B exerts a repulsive force (directly away from B) on charge A of 3.0 N. Charge C exerts an attractive force (directly toward C) on charge A of 6.0 N. Finally, charge D exerts an attractive force of 2.0 N on charge A. 1. Assuming that forces are vectors, what is the magnitude of the net force F⃗ netF→net exerted on charge A? Express your answer in newtons. 2. What is the direction of the net force F⃗ netF→net exerted on charge A? Use the xy-plane with the origin at A and with x-axis directed to B. Express your answer in degrees measured clockwise from the negative y-axis.arrow_forwardPleae help solve for magnitude.arrow_forward(Figure 1) shows five electric charges. Four charges with the magnitude of the charge 2.0 nC form a square with the size a = 1.5 cm . Positive charge with the magnitude of q = 2.5 nC is placed in the center of the square. What is the direction of the force on the 2.5 nC charge in the middle of the figure due to the four other charges? Express your answer in degrees to two significant figures.arrow_forward
- Charges q1, 92 and q3 are arranged in the x-axis. Charge q3 = 14 nC and is at the origin. Charge q2 = -3.5 nC and is at x = 2 cm. Charge q1 is at x =2. Solve for q1 (magnitude and sign) if the net force on q3 is zero. Express your answer in nC.arrow_forwardPart A (Figure 1) shows five electric charges. Four charges with the magnitude of the charge 2.0 nC form a square with the size a = 1.0 cm. Positive charge with the magnitude of q = 7.0 nC is placed in the center of the square. What is the magnitude of the force on the 7.0 nC charge in the middle of the figure due to the four other charges? Express your answer with the appropriate units. Figure y -2.0 nC a 2.0 nC + q + -2.0 nC 2.0 nC 1 of 1 μÅ ? Fon q = Value Units Submit Previous Answers Request Answer × Incorrect; Try Again; 4 attempts remaining Part B What is the direction of the force on the 7.0 nC charge in the middle of the figure due to the four other charges? Express your answer in degrees to two significant figures. x 0 = ΕΠΙ ΑΣΦ Submit Request Answer ? °, counterclockwise from the positive x-axisarrow_forward(Figure 1) shows five electric charges. Four charges with the magnitude of the charge 2.0 nC form a square with the size a = 2.0 cm. Positive charge with the magnitude of q = 2.0 nC is placed in the center of the square. Figure My Research Fo. -2.0 nC -2.0 nC y a 9 2.0 nC + a + 2.0 nC ▼ What is the magnitude of the force on the 2.0 nC charge in the middle of the figure due to the four other charges? Express your answer with the appropriate units. Fon q = Submit Part B O 0 = HÅ Value Request Answer Units ? What is the direction of the force on the 2.0 nC charge in the middle of the figure due to the four other charges? Express your answer in degrees to two significant figures. 15. ΑΣΦ wwww. 2 Review | Constants | Periodic Table ? counterclockwise from the positive x-axisarrow_forward
- Two charged particles, q1 and q2, are located on the x-axis, with q1 at the origin and q2 initially at x1 = 14.4 mm. In this configuration, q1 exerts a repulsive force of 2.62 µN on q2. Particle q2 is then moved to x2 = 17.6 mm. What is the force (magnitude and direction) that q2 exerts on q1 at this new location? (Give the magnitude in µN.)arrow_forwardThe figure below shows three small, charged spheres, all lying along the horizontal axis. Sphere A, at left, has a 6.90 nC charge. Sphere B has a 1.40 nC charge and is 3.00 cm to the right of A. Sphere C has a −2.80 nC charge and is 2.00 cm to the right of B. Find the magnitude (in N) and direction of the net electric force on each of the spheres. Three charges lie along a horizontal line. A positive charge labeled qA is on the left. 3.00 cm to its right is a positive charge labeled qB. 2.00 cm to the right of qB is a negative charge labeled qC. Net Force on A magnitude Ndirection Net Force on B magnitude Ndirection Net Force on C magnitude Ndirectionarrow_forwardIf the gravitational force of two identical particles is equal to the electrostatic force between the proton (p) and the electron (e), what is the mass m of the particles? The magnitude of the charge of the electron and proton is e = 4.8x10-10 esu (CGS), G-6.7x10 CGS, the distance between the [p, e] pair is equal to the distance between the [m, m] pair.arrow_forward
- Charges q1, 92 and 93 are arranged in the x-axis. Charge q3 = 14 nC and is at the origin. Charge q2 = 3.8 nC and is at x = 9 cm. Charge q1 is at x = 5 cm. Solve for q1 (magnitude and sign) if the net force on q3 is zero. Express your answer in nC.arrow_forwardSolve the following problems completely and neatly. Write your solution in a clean sheet of paper. A +80µC charge is placed at the origin. A -35µC is placed at x = 2m and a +170µC is placed at x= -4m. (a) what is the net electric force acting on the +80µC charge? (b) what is the net electric force acting on the +170µC charge?arrow_forwardFour electrically charged spheres are located on the corners of a square whose sides measures 1.3 cm. All spheres are identically charged except that the three are negative while only one is positive (q3). If the charges are 8.6 uC. Find the net force acting on q3.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Introduction to Vectors and Their Operations; Author: Professor Dave Explains;https://www.youtube.com/watch?v=KBSCMTYaH1s;License: Standard YouTube License, CC-BY