
Concept explainers
(a)
The magnitudes of the velocity and acceleration of the Moon relative to the Earth.
(a)

Answer to Problem 40P
The velocity of the Moon as it travels in a circular orbit around the Earth is found to be
Explanation of Solution
Given:
The radius of the Moon’s orbit around the Earth,
The time period of revolution of the moon around the Earth,
Formula used:
The Moon travels a distance equal to the circumference of its orbit in the time equal to its time period. Its velocity
As it revolves around the Earth, it experiences a
Calculation:
Express the radius of the Moon’s orbit around the Earth in meters.
Express the time period of the Moon’s revolution around the Earth.
Substitute the values of
Substitute the values of
Conclusion:
Thus, the velocity of the Moon as it travels in a circular orbit around the Earth is found to be
(b)
The magnitudes of the velocity and acceleration of the Earth relative to the Sun
(b)

Answer to Problem 40P
The velocity of the Earth as it travels in a circular orbit around the sun is found to be
Explanation of Solution
Given:
The radius of the Earth’s orbit around the Sun,
The time period of revolution of the Earth around the Sun,
Formula used:
The Earth travels a distance equal to the circumference of its orbit in the time equal to its time period. Its velocity
As it revolves around the Sun, it experiences a centripetal force towards the center of its orbit. Its centripetal acceleration is given by,
Calculation:
Express the radius of the Earth’s orbit around the sun in meters.
Express the time period of the Earth’s revolution around the Sun.
Substitute the values of
Substitute the values of
Conclusion:
Thus, velocity of the Earth as it travels in a circular orbit around the sun is found to be
(c)
The value of the maximum acceleration of the Moon relative to Sun and the phase of the Moon this occurs.
(c)

Answer to Problem 40P
The value of the maximum acceleration of the Moon relative to Sun is found to be
Explanation of Solution
Given:
The acceleration of the Moon relative to Earth,
The acceleration of the Earth relative to the Sun,
The radius of the Earth’s orbit around the Sun,
The radius of the Moon’s orbit around the Earth,
Calculation:
The Moon revolves around the Earth in a circular orbit and the Earth revolves around the Sun. The Moon experiences accelerations relative to both Earth and the sun.
This is shown in the diagram below:
At New Moon day, the moon is farthest from the Sun and its acceleration towards the Earth and that towards the Sun point in the same direction. Hence, at this time, the accelerations add up and the Moon’s acceleration relative to the Sun is maximum.
Calculate the distance of the moon from the Sun when it is at its farthest position from the Sun.
The Moon’s distance from the Sun is nearly equal to the Earth’s distance from the Sun.
The Moon experiences an acceleration directed towards the Earth due its revolution around the Earth and since it moves around the Sun along with the Earth, it experiences an acceleration towards the Sun. During New moon day, the Moon, Earth and the Sun are in a straight line with the Moon at the farthest from the Sun. In this position, the acceleration of the Moon towards the Earth and towards the Sun are directed along the same straight line, towards the Sun. Hence, they add up.
Since the distance of the Moon from the Sun is nearly equal to that of the Earth’s distance from it, the Moon’s acceleration due its revolution around the Sun can be taken to be equal to that of the Earth’s around the Sun.
The Moon’s maximum acceleration in a direction towards the Sun
Substitute the values of the accelerations in the above expression.
Conclusion:
Thus, the value of the maximum acceleration of the Moon relative to Sun is found to be
Want to see more full solutions like this?
Chapter 3 Solutions
Physics Fundamentals
- For what type of force is it not possible to define a potential energy expression?arrow_forward10. Imagine you have a system in which you have 54 grams of ice. You can melt this ice and then vaporize it all at 0 C. The melting and vaporization are done reversibly into a balloon held at a pressure of 0.250 bar. Here are some facts about water you may wish to know. The density of liquid water at 0 C is 1 g/cm³. The density of ice at 0 C is 0.917 g/cm³. The enthalpy of vaporization of liquid water is 2.496 kJ/gram and the enthalpy of fusion of solid water is 333.55 J/gram.arrow_forwardConsider 1 mole of supercooled water at -10°C. Calculate the entropy change of the water when the supercooled water freezes at -10°C and 1 atm. Useful data: Cp (ice) = 38 J mol-1 K-1 Cp (water) 75J mol −1 K -1 Afus H (0°C) 6026 J mol −1 Assume Cp (ice) and Cp (water) to be independent of temperature.arrow_forward
- The molar enthalpy of vaporization of benzene at its normal boiling point (80.09°C) is 30.72 kJ/mol. Assuming that AvapH and AvapS stay constant at their values at 80.09°C, calculate the value of AvapG at 75.0°C, 80.09°C, and 85.0°C. Hint: Remember that the liquid and vapor phases will be in equilibrium at the normal boiling point.arrow_forward3. The entropy of an ideal gas is S = Nkg In V. Entropy is a state function rather than a path function, and in this problem, you will show an example of the entropy change for an ideal gas being the same when you go between the same two states by two different pathways. A. Express ASV = S2 (V2) - S₁(V1), the change in entropy upon changing the volume from V₁to V2, at fixed particle number N and energy, U. B. Express ASN = S₂(N₂) - S₁ (N₁), the change in entropy upon changing the particle number from N₁ to N2, at fixed volume V and energy U. C. Write an expression for the entropy change, AS, for a two-step process (V₁, N₁) → (V2, N₁) → (V2, N₂) in which the volume changes first at fixed particle number, then the particle number changes at fixed volume. Again, assume energy is constant.arrow_forwardPlease don't use Chatgpt will upvote and give handwritten solutionarrow_forward
- 6. We used the constant volume heat capacity, Cv, when we talked about thermodynamic cycles. It acts as a proportionality constant between energy and temperature: dU = C₁dT. You can also define a heat capacity for constant pressure processes, Cp. You can think of enthalpy playing a similar role to energy, but for constant pressure processes δαρ C = (37) - Sup Ср ат P = ат Starting from the definition of enthalpy, H = U + PV, find the relationship between Cy and Cp for an ideal gas.arrow_forwardPure membranes of dipalmitoyl lecithin phospholipids are models of biological membranes. They melt = 41°C. Reversible melting experiments indicate that at Tm AHm=37.7 kJ mol-1. Calculate: A. The entropy of melting, ASm- B. The Gibbs free energy of melting, AGm- C. Does the membrane become more or less ordered upon melting? D. There are 32 rotatable CH2 CH2 bonds in each molecule that can rotate more freely if the membrane melts. What is the increase in multiplicity on melting a mole of bonds?arrow_forward5. Heat capacity often has a temperature dependence for real molecules, particularly if you go over a large temperature range. The heat capacity for liquid n-butane can be fit to the equation Cp(T) = a + bT where a = 100 J K₁₁ mol¹ and b = 0.1067 J K² mol¹ from its freezing point (T = 140 K) to its boiling point (T₁ = 270 K). A. Compute AH for heating butane from 170 K to 270 K. B. Compute AS for the same temperature range.arrow_forward
- 4. How much energy must be transferred as heat to cause the quasi-static isothermal expansion of one mole of an ideal gas at 300 K from PA = 1 bar to PB = 0.5 bar? A. What is VA? B. What is VB? C. What is AU for the process? D. What is AH for the process? E. What is AS for the process?arrow_forward1. The diagram shows the tube used in the Thomson experiment. a. State the KE of the electrons. b. Draw the path of the electron beam in the gravitational field of the earth. C. If the electric field directed upwards, deduce the direction of the magnetic field so it would be possible to balance the forces. electron gun 1KVarrow_forwardas a hiker in glacier national park, you need to keep the bears from getting at your food supply. You find a campground that is near an outcropping of ice. Part of the outcropping forms a feta=51.5* slopeup that leads to a verticle cliff. You decide that this is an idea place to hang your food supply out of bear reach. You put all of your food into a burlap sack, tie a rope to the sack, and then tie a bag full of rocks to the other end of the rope to act as an anchor. You currently have 18.5 kg of food left for the rest of your trip, so you put 18.5 kg of rocks in the anchor bag to balance it out. what happens when you lower the food bag over the edge and let go of the anchor bag? Determine the acceleration magnitude a of the two-bag system when you let go of the anchor bag?arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College





