![EBK CHEMISTRY](https://www.bartleby.com/isbn_cover_images/8220102797864/8220102797864_largeCoverImage.jpg)
Concept explainers
How much
(a)
91.51 g
(b)
274.5 g
(c)
513.8 g
(d)
85.63 g
(e)
257.0 g
![Check Mark](/static/check-mark.png)
Interpretation:
The amount of
Concept introduction:
The concept of determining the amount of product formed at the end of a chemical reaction is based on identifying the limiting reactant in that reaction. This is done as follows:
1. Balancing the given chemical equation.
2. Determining the molar mass of each compound.
3. Converting the mass into moles and vice versa by using stoichiometric factors.
Moles can be calculated as
The mass of a compound can be calculated as
The molar mass can be calculated by:
Example:
Answer to Problem 3KSP
Solution: Option (e).
Explanation of Solution
Reason for the correct option:
Mass of calcium phosphide,
The balanced equation is as follows:
Then, from the above equation, the molar mass of the reactants
According to the above equation:
With the help of the above equations, the moles of
The moles of
Now, by comparing the valuesfrom both the reactants, the moles of
Therefore, the total amount of
Hence, option (e) is correct.
Reasons for the incorrect options:
Option (a) is incorrect because the conversion of Fahrenheit into degree Celsius is correct, but the conversion of Celsius into Kelvin is wrong.
Option (b) is incorrect because, on solving with the help of theabove equations, the answer does not match option (b).
Option (c) is incorrect because, on solving with the help of the above equations, the answer does not match option (d).
Option (d) is incorrect because, on solving with the help of the above equations, the answer does not match option (e).
Hence, options(a), (b), (c), and (d) are incorrect.
Want to see more full solutions like this?
Chapter 3 Solutions
EBK CHEMISTRY
- Check the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. Molecule 1 Molecule 2 IZ IN Molecule 4 Molecule 5 ZI none of the above ☐ Molecule 3 Х IN www Molecule 6 NH Garrow_forwardHighlight each chiral center in the following molecule. If there are none, then check the box under the drawing area. There are no chiral centers. Cl Cl Highlightarrow_forwardA student proposes the following two-step synthesis of an ether from an alcohol A: 1. strong base A 2. R Is the student's proposed synthesis likely to work? If you said the proposed synthesis would work, enter the chemical formula or common abbreviation for an appropriate strong base to use in Step 1: If you said the synthesis would work, draw the structure of an alcohol A, and the structure of the additional reagent R needed in Step 2, in the drawing area below. If there's more than one reasonable choice for a good reaction yield, you can draw any of them. ☐ Click and drag to start drawing a structure. Yes No ロ→ロ 0|0 G Х D : ☐ பarrow_forward
- टे Predict the major products of this organic reaction. Be sure to use wedge and dash bonds when necessary, for example to distinguish between different major products. ☐ ☐ : ☐ + NaOH HO 2 Click and drag to start drawing a structure.arrow_forwardShown below are five NMR spectra for five different C6H10O2 compounds. For each spectrum, draw the structure of the compound, and assign the spectrum by labeling H's in your structure (or in a second drawing of the structure) with the chemical shifts of the corresponding signals (which can be estimated to nearest 0.1 ppm). IR information is also provided. As a reminder, a peak near 1700 cm-1 is consistent with the presence of a carbonyl (C=O), and a peak near 3300 cm-1 is consistent with the presence of an O–H. Extra information: For C6H10O2 , there must be either 2 double bonds, or 1 triple bond, or two rings to account for the unsaturation. There is no two rings for this problem. A strong band was observed in the IR at 1717 cm-1arrow_forwardPredict the major products of the organic reaction below. : ☐ + Х ك OH 1. NaH 2. CH₂Br Click and drag to start drawing a structure.arrow_forward
- NG NC 15Show all the steps you would use to synthesize the following products shown below using benzene and any organic reagent 4 carbons or less as your starting material in addition to any inorganic reagents that you have learned. NO 2 NC SO3H NO2 OHarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forwardShow work...don't give Ai generated solutionarrow_forward
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079243/9781305079243_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337398909/9781337398909_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133611097/9781133611097_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)