Concept explainers
(a)
Interpretation:
Pressure of
Concept Introduction:
An ideal gas contains a large number of randomly moving particles that are supposed to have perfectly elastic collisions among themselves. It is a theoretical concept. Gases that show perfect elastic collision are practically not possible. At higher
Here,
(a)

Answer to Problem 3B.5E
Pressure of
Explanation of Solution
Ideal gas equation is as follows:
Rearrange equation (1) to calculate
The conversion factor to convert
Substitute
Hence, pressure of
(b)
Interpretation:
Volume of container in
Concept Introduction:
Refer to part (a).
(b)

Answer to Problem 3B.5E
Volume of container in
Explanation of Solution
Expression to calculate moles of
Substitute
Rearrange equation (1) to calculate
The conversion factor to convert
Substitute
Volume of container in
(c)
Interpretation:
Mass of
Concept Introduction:
Refer to part (a).
(c)

Answer to Problem 3B.5E
Mass of
Explanation of Solution
The conversion factor to convert
Rearrange equation (1) to calculate
Substitute
Moles of
Expression to calculate moles of
Rearrange equation (6) to calculate mass of
Substitute
Hence, mass of
(d)
Interpretation:
Moles of
Concept Introduction:
Refer to part (a).
(d)

Answer to Problem 3B.5E
Moles of
Explanation of Solution
The conversion factor to convert
Substitute
Hence, moles of
Want to see more full solutions like this?
Chapter 3 Solutions
ACHIEVE/CHEMICAL PRINCIPLES ACCESS 2TERM
- I need help with the followingarrow_forwardFor Raman spectroscopy/imaging, which statement is not true regarding its disadvantages? a) Limited spatial resolution. b) Short integration time. c) A one-dimensional technique. d) Weak signal, only 1 in 108 incident photons is Raman scattered. e) Fluorescence interference.arrow_forwardUsing a cell of known pathlength b = 1.25115 x 10-3 cm, a water absorption spectrum was measured. The band at 1645 cm-1, assigned to the O-H bending, showed an absorbance, A, of 1.40. a) Assuming that water density is 1.00 g/mL, calculate the water molar concentration c (hint: M= mole/L) b) Calculate the molar absorptivity, a, of the 1645 cm-1 band c) The transmitted light, I, can be written as I= Ioexp(-xb), where x is the absorption coefficient (sometimes designated as alpha), Io is the input light, and b is the cell pathlength. Prove that x= (ln10)*x*c. (Please provide a full derivation of the equation for x from the equation for I). d) Calculate x for the 1645 cm-1 bandarrow_forward
- For CARS, which statement is not true regarding its advantages? a) Contrast signal based on vibrational characteristics, no need for fluorescent tagging. b) Stronger signals than spontaneous Raman. c) Suffers from fluorescence interference, because CARS signal is at high frequency. d) Faster, more efficient imaging for real-time analysis. e) Higher resolution than spontaneous Raman microscopy.arrow_forwardDraw the major product of the Claisen condensation reaction between two molecules of this ester. Ignore inorganic byproducts. Incorrect, 5 attempts remaining 1. NaOCH3/CH3OH 2. Acidic workup Select to Draw O Incorrect, 5 attempts remaining The total number of carbons in the parent chain is incorrect. Review the reaction conditions including starting materials and/or intermediate structures and recount the number of carbon atoms in the parent chain of your structure. OKarrow_forwardUsing a cell of known pathlength b = 1.25115 x 10-3 cm, a water absorption spectrum was measured. The band at 1645 cm-1, assigned to the O-H bending, showed an absorbance, A, of 1.40. a) Assuming that water density is 1.00 g/mL, calculate the water molar concentration c (hint: M= mole/L) b) Calculate the molar absorptivity, a, of the 1645 cm-1 band c) The transmitted light, I, can be written as I= Ioexp(-xb), where x is the absorption coefficient (sometimes designated as alpha), Io is the input light, and b is the cell pathlength. Prove that x= (ln10)*x*c d) Calculate x for the 1645 cm-1 bandarrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning





