FUND OF ENG THERMODYN-WILEYPLUS NEXT GEN
9th Edition
ISBN: 9781119840589
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.95P
To determine
Energy transfer by heat for process 1-2, 2-3, and 3-1, work transfer for process 1-2, 2-3, and 3-1, and sketch the cycle on pressure versus specific volume diagram.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The relation Δu = cv ΔT is valid for any kind of process, constant-volume or not.
3. 4.50 mol of N2 gas (Cym = 20.6 J mol K') is enclosed in a piston-cylinder assembly (closed system)
and undergoes the cycle depicted graphically below. Assuming N2 behaves as an ideal gas and Cm is
temperature independent over the given temperature range, calculate q, w, AU, and AH for each segment.
Label each segment with the type of process. Note: segment 2→3 follows the relationship PV = nRT .
1.) 20.0 L
2.) 50.0 L
3.) 5.00 bar
T= T; = T,
V (L)
P (bar)
Two and one-half pounds of air actuate a cycle composed of the following processes; polytropic compression 1-2, with n = 1.5; constant pressure 2-3; constant volume 3-1. The known data are: p1 = 20psia, t1 = 100oF, QR = -1682 Btu. Sketch the p-V and T-S diagram. Compute and tabulate the p-V-T at all state points. Solve for the Wnet, QR, Efficiency and pm.
Chapter 3 Solutions
FUND OF ENG THERMODYN-WILEYPLUS NEXT GEN
Ch. 3 - Prob. 3.1ECh. 3 - Prob. 3.2ECh. 3 - Prob. 3.3ECh. 3 - Prob. 3.4ECh. 3 - Prob. 3.6ECh. 3 - Prob. 3.7ECh. 3 - Prob. 3.8ECh. 3 - Prob. 3.9ECh. 3 - Prob. 3.10ECh. 3 - Prob. 3.11E
Ch. 3 - Prob. 3.12ECh. 3 - Prob. 3.13ECh. 3 - Prob. 3.1CUCh. 3 - Prob. 3.2CUCh. 3 - Prob. 3.3CUCh. 3 - Prob. 3.4CUCh. 3 - Prob. 3.5CUCh. 3 - Prob. 3.6CUCh. 3 - Prob. 3.7CUCh. 3 - Prob. 3.8CUCh. 3 - Prob. 3.9CUCh. 3 - Prob. 3.10CUCh. 3 - Prob. 3.11CUCh. 3 - Prob. 3.12CUCh. 3 - Prob. 3.13CUCh. 3 - Prob. 3.14CUCh. 3 - Prob. 3.15CUCh. 3 - Prob. 3.16CUCh. 3 - Prob. 3.17CUCh. 3 - Prob. 3.18CUCh. 3 - Prob. 3.19CUCh. 3 - Prob. 3.20CUCh. 3 - Prob. 3.21CUCh. 3 - Prob. 3.22CUCh. 3 - Prob. 3.23CUCh. 3 - Prob. 3.24CUCh. 3 - Prob. 3.25CUCh. 3 - Prob. 3.26CUCh. 3 - Prob. 3.27CUCh. 3 - Prob. 3.28CUCh. 3 - Prob. 3.29CUCh. 3 - Prob. 3.30CUCh. 3 - Prob. 3.31CUCh. 3 - Prob. 3.32CUCh. 3 - Prob. 3.33CUCh. 3 - Prob. 3.34CUCh. 3 - Prob. 3.35CUCh. 3 - Prob. 3.36CUCh. 3 - Prob. 3.37CUCh. 3 - Prob. 3.38CUCh. 3 - Prob. 3.39CUCh. 3 - Prob. 3.40CUCh. 3 - Prob. 3.41CUCh. 3 - Prob. 3.42CUCh. 3 - Prob. 3.43CUCh. 3 - Prob. 3.44CUCh. 3 - Prob. 3.45CUCh. 3 - Prob. 3.46CUCh. 3 - Prob. 3.47CUCh. 3 - Prob. 3.48CUCh. 3 - Prob. 3.49CUCh. 3 - Prob. 3.50CUCh. 3 - Prob. 3.51CUCh. 3 - Prob. 3.52CUCh. 3 - Prob. 3.1PCh. 3 - Prob. 3.2PCh. 3 - Prob. 3.3PCh. 3 - Prob. 3.4PCh. 3 - Prob. 3.5PCh. 3 - Prob. 3.6PCh. 3 - Prob. 3.7PCh. 3 - Prob. 3.8PCh. 3 - Prob. 3.9PCh. 3 - Prob. 3.10PCh. 3 - Prob. 3.11PCh. 3 - Prob. 3.12PCh. 3 - Prob. 3.13PCh. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Prob. 3.16PCh. 3 - Prob. 3.17PCh. 3 - Prob. 3.18PCh. 3 - Prob. 3.19PCh. 3 - Prob. 3.20PCh. 3 - Prob. 3.21PCh. 3 - Prob. 3.22PCh. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - Prob. 3.26PCh. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - Prob. 3.30PCh. 3 - Prob. 3.31PCh. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - Prob. 3.35PCh. 3 - Prob. 3.36PCh. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - Prob. 3.39PCh. 3 - Prob. 3.40PCh. 3 - Prob. 3.41PCh. 3 - Prob. 3.42PCh. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - Prob. 3.47PCh. 3 - Prob. 3.48PCh. 3 - Prob. 3.49PCh. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - Prob. 3.53PCh. 3 - Prob. 3.54PCh. 3 - Prob. 3.55PCh. 3 - Prob. 3.56PCh. 3 - Prob. 3.57PCh. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Prob. 3.63PCh. 3 - Prob. 3.64PCh. 3 - Prob. 3.65PCh. 3 - Prob. 3.66PCh. 3 - Prob. 3.67PCh. 3 - Prob. 3.68PCh. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - Prob. 3.72PCh. 3 - Prob. 3.73PCh. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - Prob. 3.79PCh. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - Prob. 3.82PCh. 3 - Prob. 3.83PCh. 3 - Prob. 3.84PCh. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - Prob. 3.93PCh. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Prob. 3.99P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Carbon Dioxide is contained in a piston-cylinder assembly and undergoes a cycle made of the fol- lowing processes: • Process 1-2: Constant volume from 1 bar, 300 K to 600 K • Process 2–3: Polytropic expansion with n=k until P3 = P1 • Process 3-1: Isobaric compression (a) Sketch the cycle on p-v and T-v coordinates (b) Determine the work and heat transfer in each process, in kJ/kg (c) Determine the type of cycle that this is. If it is a power cycle, compute the thermal efficiency. Otherwise, compute the coefficient of performance for a heat pump cycle.arrow_forward= 95°F and m3 = 1.5 lb/s. Refrigerant 134a The figure belows shows three components of an air-conditioning system, where T3 flows through a throttling valve and a heat exchanger while air flows through a fan and the same heat exchanger. Data for steady- state operation are given on the figure. There is no significant heat transfer between any of the components and the surroundings. Kinetic and potential energy effects are negligible. Air Tj = 535°R C,= 0.240 Btu/I6•°R Saturated liquid R-134a T3, ṁ3 Fan Wey = -0.2 hp Throttling valve 4 Saturated vapor P5=P4 P4 = 60 lbf/in.2 T = 528°R -Heat exchanger Modeling air as an ideal gas with constant c, = 0.240 Btu/lb· °R, determine the mass flow rate of the air, in Ib/s. i Ib/sarrow_forward20 g of air undergoes a closed cycle, illustrated in Figure Q2, which consists of the following 3 processes: 1-2 Constant pressure heat rejection. 2-3 Constant volume heat addition. 3-1 Isothermal expansion back to the original conditions. P (kPa) 75 1 V (m') 0.025 0.04 Figure Q2: Three process cycle Given that Rair = 287 J/kg-K, and Cy = 718 J/kg-K, and assuming ideal gas conditions throughout: (a) Determine the temperatures at points 1, 2 and 3, and the pressure at point 3. (b) Determine the work during each process, and the net work from the cycle. (c) Determine the heat transferred during each process. (d) Verify that this is a cycle.arrow_forward
- The figure belows shows three components of an air-conditioning system, where T3= 115°F and m˙3= 1.5 lb/s. Refrigerant 134a flows through a throttling valve and a heat exchanger while air flows through a fan and the same heat exchanger. Data for steady-state operation are given on the figure. There is no significant heat transfer between any of the components and the surroundings. Kinetic and potential energy effects are negligible. Modeling air as an ideal gas with constant cp = 0.240 Btu/lb · °R, determine the mass flow rate of the air, in lb/s.arrow_forwardKrypton in a closed system is compressed adiabatically from 94 K and 1 bar to a final pressure of 24 bar. Compute the required work. Assume krypton is an ideal gas. From Appendix B in the text, we can assume the heat capacity of krypton is independent of temperature and CP=2.5R , where R is the molar gas constant R=8.314 J/(mol K). For an ideal gas, recall CV=CP−R=1.5R. Report your answer in units of kJ/mol using three decimal places.arrow_forward2. thermodynamicsarrow_forward
- Initially contains Air: P1 = 30 lbf/in^2 T1 = 540 °F V1 = 4 ft^3 Second phase of process involving Air to a final state: P2 = 20 lbf/in^2 V2 = 4.5 ft^3 Wheel transfers energy TO the air by WORK at 1 Btu. Energy transfers TO the air by HEAT at 12 Btu. Ideal Gas Behavior. Find T2 in Radians. Wpw =-1 Btu Ima Q = -12 Btu Air Wpist = ? Initially, p₁ = 30 lbf/in.², T₁ = 540°F, V₁ = 4 ft³. Finally, p2 = 20 lbf/in.², V₂ = 4.5 ft³.arrow_forward1Kg of water contained in a piston-cylinder assembly undergoes five processes in series as follows: Process 1-2: constant pressure heating at 10 bar from saturated vapor Process 2-3: constant volume cooling to P; = 5 bar and T; = 180°C Process 3-4: constant pressure compression to x=0.45 Process 4-5: constant volume heating to Ps = P1 Process 5-1: constant pressure heating to saturated vapor a. Sketch the above processes on both T-v and P-v diagrams b. Find quality at point 5, and the work done in each processarrow_forwardSaturated steam at P1=25 bar expands adiabatically through a throttling valve to P2=4 bar. If the quality of the steam at the valve inlet is x1=0.9 what is the quality x2 at the valve outlet Please respond ASAParrow_forward
- Initially contains Air: P1 = 30 lbf/in^2 T1 = 540 °F V1 = 4 ft^3 Second phase of process involving Air to a final state: P2 = 20 lbf/in^2 V2 = 4.5 ft^3 Wheel transfers energy TO the air by WORK at 1 Btu. Energy transfers TO the air by HEAT at 12 Btu. Ideal Gas Behavior. Wpw =-1 Btu Ima Determine whether the piston's work is done ON the system or BY the system. Q = -12 Btu Air Wpist = ? Initially, p₁ = 30 lbf/in.², T₁ = 540°F, V₁ = 4 ft³. Finally, p2 = 20 lbf/in.², V₂ = 4.5 ft³.arrow_forwardI need answer within 20 minutes please please with my best wishesarrow_forwardQuestion 2 The work done during polytropic expansion of gas from state 1 to state 2 is given by: W = (P₂V₂ - P₁V₁) 1-n A pressurised reservoir connected to a vertical barrel is used to launch projectiles as shown in Figure Q2.1. Assume no leakage around the projectile, no friction and no pressure drop across the valve. The barrel is cylindrical with a diameter, D = 50mm and a length, L = 0.8m. The mass of the projectile, M = 1kg. The volume of the reservoir, V = 2 litres. Atmospheric pressure is 1.01 bar. 0 L M Barrel Valve Figure Q2.1 Reservoir Volume, Vr a) By applying conservation of energy, for an initial reservoir pressure and temperature of 2bar and 20degC and assuming polytropic expansion with n = 1.3, find the exit velocity of the projectile. b) If the valve shuts at the instant the projectile leaves the barrel, what mass of gas is used to launch the projectile? c) Prove that a barrel length of 0.64m results in maximum exit velocity. d) Using this barrel length, what is the…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license