FUND OF ENG THERMODYN-WILEYPLUS NEXT GEN
9th Edition
ISBN: 9781119840589
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.41P
To determine
Time taken for the entire process, and show the states on the temperature versus specific volume diagram.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A spring-loaded piston-cylinder device contains of m=1kg carbon dioxide. Initially, the spring has no force on the piston and
P₁ = 500kPa, T₁ = 150K, V₁ = 0.1m³. Heat is transferred to the gas, causing the piston to rise and to compress the spring. At the
state 2, T₁₂=900K, V₂=0.3m³. The gas is an ideal gas.
(11) Calculate the heat transferred into the system in
P1, V1, T1
P2, V2, T2
in kJ?
2) As shown, a piston-cylinder assembly
contains 5 g of air holding the piston
against the stops. The air, initially at 3
bar, 600 K, is slowly cooled until the
piston just begins to move downward in
the cylinder. The air behaves as an ideal
gas, g = 9.81 m/s², and friction is
negligible. Sketch the process of the air
on a p-V diagram labeled with the
temperature and pressure at the end
states. Also determine the heat transfer,
in kJ, between the air and its
surroundings.
Patm =1 bar
Stops
Piston
m= 50 kg
A = 9.75 × 10-3 m²
5 g of Air
T = 600 K
P = 3 bar
Water vapor undergoes the following processes: a. From a state at 200 kPa and 600 ° C it expands isothermally up to 100 kPa. B. Immediately isobarically compressed to 2 m3 / kg. C. From this last state it follows an isochoric process until reaching 600 ° C. Perform: a. Plotting the processes on the exact P-ν diagram. You must use the diagram P-ν
Chapter 3 Solutions
FUND OF ENG THERMODYN-WILEYPLUS NEXT GEN
Ch. 3 - Prob. 3.1ECh. 3 - Prob. 3.2ECh. 3 - Prob. 3.3ECh. 3 - Prob. 3.4ECh. 3 - Prob. 3.6ECh. 3 - Prob. 3.7ECh. 3 - Prob. 3.8ECh. 3 - Prob. 3.9ECh. 3 - Prob. 3.10ECh. 3 - Prob. 3.11E
Ch. 3 - Prob. 3.12ECh. 3 - Prob. 3.13ECh. 3 - Prob. 3.1CUCh. 3 - Prob. 3.2CUCh. 3 - Prob. 3.3CUCh. 3 - Prob. 3.4CUCh. 3 - Prob. 3.5CUCh. 3 - Prob. 3.6CUCh. 3 - Prob. 3.7CUCh. 3 - Prob. 3.8CUCh. 3 - Prob. 3.9CUCh. 3 - Prob. 3.10CUCh. 3 - Prob. 3.11CUCh. 3 - Prob. 3.12CUCh. 3 - Prob. 3.13CUCh. 3 - Prob. 3.14CUCh. 3 - Prob. 3.15CUCh. 3 - Prob. 3.16CUCh. 3 - Prob. 3.17CUCh. 3 - Prob. 3.18CUCh. 3 - Prob. 3.19CUCh. 3 - Prob. 3.20CUCh. 3 - Prob. 3.21CUCh. 3 - Prob. 3.22CUCh. 3 - Prob. 3.23CUCh. 3 - Prob. 3.24CUCh. 3 - Prob. 3.25CUCh. 3 - Prob. 3.26CUCh. 3 - Prob. 3.27CUCh. 3 - Prob. 3.28CUCh. 3 - Prob. 3.29CUCh. 3 - Prob. 3.30CUCh. 3 - Prob. 3.31CUCh. 3 - Prob. 3.32CUCh. 3 - Prob. 3.33CUCh. 3 - Prob. 3.34CUCh. 3 - Prob. 3.35CUCh. 3 - Prob. 3.36CUCh. 3 - Prob. 3.37CUCh. 3 - Prob. 3.38CUCh. 3 - Prob. 3.39CUCh. 3 - Prob. 3.40CUCh. 3 - Prob. 3.41CUCh. 3 - Prob. 3.42CUCh. 3 - Prob. 3.43CUCh. 3 - Prob. 3.44CUCh. 3 - Prob. 3.45CUCh. 3 - Prob. 3.46CUCh. 3 - Prob. 3.47CUCh. 3 - Prob. 3.48CUCh. 3 - Prob. 3.49CUCh. 3 - Prob. 3.50CUCh. 3 - Prob. 3.51CUCh. 3 - Prob. 3.52CUCh. 3 - Prob. 3.1PCh. 3 - Prob. 3.2PCh. 3 - Prob. 3.3PCh. 3 - Prob. 3.4PCh. 3 - Prob. 3.5PCh. 3 - Prob. 3.6PCh. 3 - Prob. 3.7PCh. 3 - Prob. 3.8PCh. 3 - Prob. 3.9PCh. 3 - Prob. 3.10PCh. 3 - Prob. 3.11PCh. 3 - Prob. 3.12PCh. 3 - Prob. 3.13PCh. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Prob. 3.16PCh. 3 - Prob. 3.17PCh. 3 - Prob. 3.18PCh. 3 - Prob. 3.19PCh. 3 - Prob. 3.20PCh. 3 - Prob. 3.21PCh. 3 - Prob. 3.22PCh. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - Prob. 3.26PCh. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - Prob. 3.30PCh. 3 - Prob. 3.31PCh. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - Prob. 3.35PCh. 3 - Prob. 3.36PCh. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - Prob. 3.39PCh. 3 - Prob. 3.40PCh. 3 - Prob. 3.41PCh. 3 - Prob. 3.42PCh. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - Prob. 3.47PCh. 3 - Prob. 3.48PCh. 3 - Prob. 3.49PCh. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - Prob. 3.53PCh. 3 - Prob. 3.54PCh. 3 - Prob. 3.55PCh. 3 - Prob. 3.56PCh. 3 - Prob. 3.57PCh. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Prob. 3.63PCh. 3 - Prob. 3.64PCh. 3 - Prob. 3.65PCh. 3 - Prob. 3.66PCh. 3 - Prob. 3.67PCh. 3 - Prob. 3.68PCh. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - Prob. 3.72PCh. 3 - Prob. 3.73PCh. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - Prob. 3.79PCh. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - Prob. 3.82PCh. 3 - Prob. 3.83PCh. 3 - Prob. 3.84PCh. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - Prob. 3.93PCh. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Prob. 3.99P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2-kg saturated liquid Refrigerant-134a at 0. 40 MPa undergoes the following:Process 1-2: Evaporation at constant pressure until its temperature is 30 °C.Process 2-3: Cooled down at constant volume until it starts to condensate.a. Sketch the P-v and T-v diagram for the processes. Clearly show all states on the diagram. b. Estimate (no need for interpolation) the initial and final temperature of the refrigerant c. Determine the amount of heat transfer involved for each process and statewhether it is rejected or absorbed by the system. (Perform interpolation where necessary).arrow_forwardA cylinder-piston assembly initially contains water at 3 MPa and 300°C. The water is cooled at constant volume to 200 °C, and then compressed isothermally to a final pressure of 2.5 MPa. Sketch the process on a T-v diagram and find the specific volume at the 3 states. [Ans. 0.081l m kg. 0.0811, 1.155x10 m kg]arrow_forwardAs shown, a piston-cylinder assembly contains 5 g of air holding the piston against the stops. The air, initially at 3 bar, 600 K, is slowly cooled until the piston just begins to move downward in the cylinder. The air behaves as an ideal gas, g = 9.81 m/s2, and friction is negligible. Sketch the process of the air on a p–V diagram labeled with the temperature and pressure at the end states. Also determine the heat transfer, in kJ, between the air and its surroundings.arrow_forward
- 1) A piston-cylinder assembly contains 10 kg of refrigerant 134a. Initially, 8 kg of SA134a is in the liquid phase and the temperature is -10°C. Then there is a slow heat transfer to SA-134a, the piston rises and the piston touches the stoppers when the volume is 400 liters. (a) Show the phase change in the P-V diagram, (b) the temperature of the system at the moment the piston contacts the stoppers, (c) calculate the work done during the process.arrow_forwardA closed, rigid tank is filled with only saturated vapor (water), initially at 20 bar, is cooled until the pressure is 3 bar.. Show the process of the water on a sketch of the T-v diagram and evaluate the heat transfer, in kJ/kg. c. Determine the specific internal energy at state 1 (u1 )in kJ/kg d. Determine the quality x at state 2 e. Determine the specific internal energy at state 2 (u2) in kJ/kgf. Determine the energy transfer by heat/mass during the process (kJ/kg)arrow_forwardA piston cylinder device has a volume of 0.04 m3 and initially contains air at 293 K and 1 bar. This device is used to perform a cycle in which the gas is heated at a constant volume until the temperature reaches 1200 K. The air is allowed to expand following an isothermal process until the volume is 3.5 times the original volume. It is then cooled at a constant volume process. The last process the completes the cycle going back to the initial state with a process during which PV1.363 = constant. For the air, the specific heat is cv =0.790 kJ/(kg·K) = constant and its gas constant is Rg=0.287 kJ/(kg·K). a) Calculate the net work produced by this cycle, the required heat input to the cycle and its thermal efficiency. b) How much heat is removed (discharged) from the system during the cycle? c) Could the heat removed from this cycle be used to heat (or partial heat) 200 kg of water that is at an initial temperature of 293 K to a temperature of 372 K? Would you recommend designing a heat…arrow_forward
- 1. Graph this, 0.25kg/s of Carbon Dioxide (R = 0.1889 kJ/kg-K, k = 1.289) undergo a certain process in a close system from initial volume and temperature of 268cm3 and 134K to a final volume and temperature of 804cm3 and 402K respectively. From the data given, perform necessary analysis in determining the type of process to further solve the following questions as follow: a. Work done by/on the system (kJ/s) b. Change in Entropy (kW/K) c. Heat added/rejected by the system (kJ/s)arrow_forwardA rigid, insulated vessel is divided into two compartments connected by a valve. Initially, one compartment, occupying 1.0 ft, contains air at 50 lb/in?, 750°R, and the other, occupying 2.0 ft?, is evacuated. The valve is opened and the air is allowed to fill both volumes. Assume the air behaves as an ideal gas and that the final state is in equilibrium. Determine the final temperature of the air, in °R, and the amount of entropy produced, in Btu/°R.arrow_forward1.i just need the interpretation of this... Interpret this problem so that it would be easy for me to answer the problemarrow_forward
- 0.25kg/s of Catbon Dioxide (R 0.1889 kJ/kg-K, k 1.289) undergo a certain process in a close system from initial volume and temperature of 268cm' and 134K to a final volume and temperature of 804cm' and 402K respectively. From the data given, perform necessary analysis in determining the type of process to further solve the following questions as follow: a. Work done by/on the system (kJ/s) b. Change in Entropy (kW/K) c. Heat added/rejected by the system (kJ/s)arrow_forwardfind the changes in h as appropriate. The initial state pressure is p1 = 0.5 MPa. the final state is 2. a. constant volume : v1 = 0.3 m3/kg, p2 = 0.3 MPa; b. constant entropy : s1 = 6.3 kJ/kg K, p2 = 0.15 MPa; c. constant volume : h1 = 2500 kJ/kg, p2 = 0.2 MPa; d. constant enthalpy : s1 = 6.4 kJ/kg K, p2 = 0.2 MPa;arrow_forwardWater is heated in a closed container with rigid walls that is a perfect cube (1 m x 1 m x 1 m). The initial volume of the water (liquid + vapor) is 1 m'. The initial temperature of the water is 100 °C and it has a quality of 0.3. It is heated until it reaches a final pressure of 700 kPa. a. Sketch the process on the P V diagram. b. What is the work done by the water during this heating process in kJ? c. What is the final temperature of the water? d. What is the heat required in order for this process to occur in kJ? P Varrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license