(a)
Interpretation:
The values of the quantum numbers associated with the given orbitals should be identified using the concept of quantum numbers.
Concept Introduction:
Each electron in an atom is described by four different quantum numbers. The first three (n, l, ml) specify the particular orbital of interest, and the fourth (ms) specifies how many electrons can occupy that orbital.
Principal Quantum Number (n)
The principal quantum number (n) assigns the size of the orbital and specifies the energy of an electron. If the value of n is larger, then the average distance of an electron in the orbital from the nucleus will be greater. Therefore the size of the orbital is large. The principal quantum numbers have the integral values of 1, 2, 3 and so forth and it corresponds to the quantum number in
The angular momentum quantum number (l) explains the shape of the atomic orbital. The values of l are integers which depend on the value of the principal quantum number, n. For a given value of n, the possible values of l range are from 0 to n − 1. If n = 1, there is only one possible value of l (l=0). If n = 2, there are two values of l: 0 and 1. If n = 3, there are three values of l: 0, 1, and 2. The value of l is selected by the letters s, p, d, and f. If l = 0, we have an s orbital; if l = 1, we have a p orbital; if l = 2, we have a d orbital and finally if l = 3, we have a f orbital. A collection of orbitals with the same value of n is called a shell. One or more orbitals with the same n and l values are referred to a subshell (sublevel). The value of l also has a slight effect on the energy of the subshell; the energy of the subshell increases with l (s < p < d < f).
Magnetic Quantum Number (ml)
The magnetic quantum number (ml) explains the orientation of the orbital in space. The value of ml depends on the value of l in a subshell. This number divides the subshell into individual orbitals which hold the electrons. For a certain value of l, there are (2l + 1) integral values of ml which is explained as follows:
ml = ‒ l, ..., 0, ..., +l
If l = 0, there is only one possible value of ml: 0.
If l = 1, then there are three values of ml: −1, 0, and +1.
If l = 2, there are five values of ml, namely, −2, −1, 0, +1, and +2.
If l = 3, there are seven values of ml, namely, −3, −2, −1, 0, +1, +2, and +3, and so on.
The number of ml values indicates the number of orbitals in a subshell with a particular l value. Therefore, each ml value refers to a different orbital.
Electron Spin Quantum Number (ms)
It specifies the orientation of the spin axis of an electron. An electron can spin in only one of two directions. There are two possible ways to represent ms values. They are +½ and ‒½. One electron spins in the clockwise direction. Another electron spins in the anticlockwise direction. But, no two electrons should have the same spin quantum number.
To find: Get the values of the quantum numbers (n, l, ml, ms) associated with the given orbital (a) 2p
Get the values of the quantum numbers ‘n’, ‘l’ in (a)
(b)
Interpretation:
The values of the quantum numbers associated with the given orbitals should be identified using the concept of quantum numbers.
Concept Introduction:
Each electron in an atom is described by four different quantum numbers. The first three (n, l, ml) specify the particular orbital of interest, and the fourth (ms) specifies how many electrons can occupy that orbital.
Principal Quantum Number (n)
The principal quantum number (n) assigns the size of the orbital and specifies the energy of an electron. If the value of n is larger, then the average distance of an electron in the orbital from the nucleus will be greater. Therefore the size of the orbital is large. The principal quantum numbers have the integral values of 1, 2, 3 and so forth and it corresponds to the quantum number in Bohr’s model of the hydrogen atom. If all orbitals have the same value of ‘n’, they are said to be in the same shell (level). The total number of orbitals for a given n value is n2. As the value of ‘n’ increases, the energy of the electron also increases.
Angular Momentum Quantum Number (l)
The angular momentum quantum number (l) explains the shape of the atomic orbital. The values of l are integers which depend on the value of the principal quantum number, n. For a given value of n, the possible values of l range are from 0 to n − 1. If n = 1, there is only one possible value of l (l=0). If n = 2, there are two values of l: 0 and 1. If n = 3, there are three values of l: 0, 1, and 2. The value of l is selected by the letters s, p, d, and f. If l = 0, we have an s orbital; if l = 1, we have a p orbital; if l = 2, we have a d orbital and finally if l = 3, we have a f orbital. A collection of orbitals with the same value of n is called a shell. One or more orbitals with the same n and l values are referred to a subshell (sublevel). The value of l also has a slight effect on the energy of the subshell; the energy of the subshell increases with l (s < p < d < f).
Magnetic Quantum Number (ml)
The magnetic quantum number (ml) explains the orientation of the orbital in space. The value of ml depends on the value of l in a subshell. This number divides the subshell into individual orbitals which hold the electrons. For a certain value of l, there are (2l + 1) integral values of ml which is explained as follows:
ml = ‒ l, ..., 0, ..., +l
If l = 0, there is only one possible value of ml: 0.
If l = 1, then there are three values of ml: −1, 0, and +1.
If l = 2, there are five values of ml, namely, −2, −1, 0, +1, and +2.
If l = 3, there are seven values of ml, namely, −3, −2, −1, 0, +1, +2, and +3, and so on.
The number of ml values indicates the number of orbitals in a subshell with a particular l value. Therefore, each ml value refers to a different orbital.
Electron Spin Quantum Number (ms)
It specifies the orientation of the spin axis of an electron. An electron can spin in only one of two directions. There are two possible ways to represent ms values. They are +½ and ‒½. One electron spins in the clockwise direction. Another electron spins in the anticlockwise direction. But, no two electrons should have the same spin quantum number.
To find: Get the values of the quantum numbers (n, l, ml, ms) associated with the given orbital (b) 3s
Get the values of the quantum numbers ‘n’, ‘l’ in (b)
(c)
Interpretation:
The values of the quantum numbers associated with the given orbitals should be identified using the concept of quantum numbers.
Concept Introduction:
Each electron in an atom is described by four different quantum numbers. The first three (n, l, ml) specify the particular orbital of interest, and the fourth (ms) specifies how many electrons can occupy that orbital.
Principal Quantum Number (n)
The principal quantum number (n) assigns the size of the orbital and specifies the energy of an electron. If the value of n is larger, then the average distance of an electron in the orbital from the nucleus will be greater. Therefore the size of the orbital is large. The principal quantum numbers have the integral values of 1, 2, 3 and so forth and it corresponds to the quantum number in Bohr’s model of the hydrogen atom. If all orbitals have the same value of ‘n’, they are said to be in the same shell (level). The total number of orbitals for a given n value is n2. As the value of ‘n’ increases, the energy of the electron also increases.
Angular Momentum Quantum Number (l)
The angular momentum quantum number (l) explains the shape of the atomic orbital. The values of l are integers which depend on the value of the principal quantum number, n. For a given value of n, the possible values of l range are from 0 to n − 1. If n = 1, there is only one possible value of l (l=0). If n = 2, there are two values of l: 0 and 1. If n = 3, there are three values of l: 0, 1, and 2. The value of l is selected by the letters s, p, d, and f. If l = 0, we have an s orbital; if l = 1, we have a p orbital; if l = 2, we have a d orbital and finally if l = 3, we have a f orbital. A collection of orbitals with the same value of n is called a shell. One or more orbitals with the same n and l values are referred to a subshell (sublevel). The value of l also has a slight effect on the energy of the subshell; the energy of the subshell increases with l (s < p < d < f).
Magnetic Quantum Number (ml)
The magnetic quantum number (ml) explains the orientation of the orbital in space. The value of ml depends on the value of l in a subshell. This number divides the subshell into individual orbitals which hold the electrons. For a certain value of l, there are (2l + 1) integral values of ml which is explained as follows:
ml = ‒ l, ..., 0, ..., +l
If l = 0, there is only one possible value of ml: 0.
If l = 1, then there are three values of ml: −1, 0, and +1.
If l = 2, there are five values of ml, namely, −2, −1, 0, +1, and +2.
If l = 3, there are seven values of ml, namely, −3, −2, −1, 0, +1, +2, and +3, and so on.
The number of ml values indicates the number of orbitals in a subshell with a particular l value. Therefore, each ml value refers to a different orbital.
Electron Spin Quantum Number (ms)
It specifies the orientation of the spin axis of an electron. An electron can spin in only one of two directions. There are two possible ways to represent ms values. They are +½ and ‒½. One electron spins in the clockwise direction. Another electron spins in the anticlockwise direction. But, no two electrons should have the same spin quantum number.
To find: Get the values of the quantum numbers (n, l, ml, ms) associated with the given orbital (c) 5d
Get the values of the quantum numbers ‘n’, ‘l’ in (c)
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
GEN COMBO CHEMISTRY: ATOMS FIRST; ALEKS 360 2S ACCESS CARD CHEMISTRY:ATOMS FIRST
- Can you please help me with drawing the Lewis structure of each molecular formula?I truly appreciate you!arrow_forwardPlease draw and explainarrow_forwardDescribe each highlighted bond in terms of the overlap of atomic orbitals. (a) Н Н H H [References] HIC H H C H H-C-CC-N: H σ character n character (b) HIC H H H H-C-C-C HIC H Н H O-H σ character n character Submit Answer Try Another Version 3 item attempts remainingarrow_forward
- 11 Naming and drawing alcohols Write the systematic (IUPAC) name for each of the following organic molecules: structure OH HO OH Explanation Check name ☐arrow_forwardwhat is the drawn mechanism for diethyl carbonate and 4 - bromo - N, N -dimethylaniline to create crystal violet?arrow_forwardWhich of the following compounds are constitutional isomers of each other? I and II O II and III O III and IV OI and IV O II and IV CI H CI H CI H H CI H-C-C-CI C-C-C-CI H-C-C-CI H-C-C-CI H CI Ĥ ĆI A A Ĥ ĆI || IVarrow_forward
- Please correct answer and don't used hand raitingarrow_forwardQ1: Curved Arrows, Bronsted Acids & Bases, Lewis Acids & Bases Considering the following reactions: a) Predict the products to complete the reactions. b) Use curved electron-pushing arrows to show the mechanism for the reaction in the forward direction. Redraw some of the compounds to explicitly illustrate all bonds that are broken and all bonds that are formed. c) Label Bronsted acids and bases in the left side of the reactions. Label conjugate acids and bases in the right side of the reactions. d) Label Lewis acids and bases, nucleophiles and electrophiles in the left side of the reactions. A. + OH CH30: OH B. + HBr C. H₂SO4 D. CF 3. CH 3 + HCI N H fluoxetine antidepressant 1↓ JDownloadarrow_forwardDon't used Ai solutionarrow_forward
- Part 3: AHm,system Mass of 1.00 M HCI Vol. of 1.00 M HCI Mass of NaOH(s) Total Mass in Calorimeter Mole product if HCI limiting reactant Trial 1 62.4009 1.511g Mole product if NaOH limiting reactant Limiting reactant Initial Temperature Final Temperature 23.8°C 37.6°C Change in Temperature AHm,system (calculated) Average AHm,system (calculated) (calculated) (calculated) Trial 2 64.006g 1.9599 (calculated) (calculated) (calculated) (calculated) (calculated) (calculated) 24.7°C 41.9°C (calculated) (calculated) (2 pts. each)arrow_forwardDon't used Ai solutionarrow_forwardWhat is the numerical value of the slope using the equation y=-1.823x -0.0162 please show calculationsarrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning