GEN COMBO CHEMISTRY: ATOMS FIRST; ALEKS 360 2S ACCESS CARD CHEMISTRY:ATOMS FIRST
GEN COMBO CHEMISTRY: ATOMS FIRST; ALEKS 360 2S ACCESS CARD CHEMISTRY:ATOMS FIRST
3rd Edition
ISBN: 9781260020229
Author: Julia Burdge
Publisher: McGraw-Hill Education
bartleby

Videos

Textbook Question
Book Icon
Chapter 3, Problem 3.102QP

Determine the number of unpaired electrons in each atom: K, Ca, Sc, Ti, V, Cr, Mn.

(a)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The number of unpaired electrons in the given atoms should be given by knowing their ground-state electron configurations.

Concept Introduction:

An orbital is an area of space in which electrons are orderly filled.  The maximum capacity in any type of orbital is two electrons.  An atomic orbital is defined as the region of space in which the probability of finding the electrons is highest.  It is subdivided into four orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.

There are three basic principles in which orbitals are filled by the electrons.

  1. 1. Aufbau principle: In German, the word 'aufbau' means 'building up'.  The electrons are arranged in various orbitals in the order of increasing energies.
  2. 2. Pauli exclusion principle: An electron does not have all the four quantum numbers.
  3. 3. Hund’s rule: Each orbital is singly engaged with one electron having the maximum same spin capacity after that only pairing occurs.

The electron configuration is the allocation of electrons of an atom in atomic orbitals.  Electronic configuration of a particular atom is written by following the three basic principles.  If all the atomic orbitals are filled by electrons, then the atom is diamagnetic in nature.  Diamagnetic atoms are repelled by the magnetic field.  If one or more unpaired electrons are present in an atom, then that atom is paramagnetic in nature.  Paramagnetic atoms are attracted to the magnetic field.

To find: Count the number of unpaired electrons in K

Answer to Problem 3.102QP

The number of unpaired electron in K is 1

Explanation of Solution

K is placed in IA group of the periodic table.  Its atomic number is 19.  Therefore, K has 19 electrons in its shells.  K is a s-block element.  So, its outermost electrons are located in s -shell.

The noble gas core for K is [Ar] , where atomic number of Ar is 18.  So, the order of filling beyond the noble gas core is 4s . The electrons in K beyond its noble gas core is (19 – 18) = 1 electron.  The one electron enters into the 4s -shell.

All the electrons are placed in the atomic orbitals by following Aufbau principle, Pauli exclusion principle and Hund’s rule

GEN COMBO CHEMISTRY: ATOMS FIRST; ALEKS 360 2S ACCESS CARD CHEMISTRY:ATOMS FIRST, Chapter 3, Problem 3.102QP , additional homework tip  1

The one electron of K occupy the atomic orbitals from lowest energy to highest energy orbitals.  The maximum capacity of each orbital has two electrons which have opposite spins.  s -atomic orbitals have a single shell.  The one electron is going into the 4s -atomic orbital.  Blue colored orbital corresponds to 4s -atomic orbital.

The unpaired electrons are present in 4s -atomic orbitals.  There is only one unpaired electron in 4s -atomic orbital in the case of K -atom.

(b)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The number of unpaired electrons in the given atoms should be given by knowing their ground-state electron configurations.

Concept Introduction:

An orbital is an area of space in which electrons are orderly filled.  The maximum capacity in any type of orbital is two electrons.  An atomic orbital is defined as the region of space in which the probability of finding the electrons is highest.  It is subdivided into four orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.

There are three basic principles in which orbitals are filled by the electrons.

  1. 1. Aufbau principle: In German, the word 'aufbau' means 'building up'.  The electrons are arranged in various orbitals in the order of increasing energies.
  2. 2. Pauli exclusion principle: An electron does not have all the four quantum numbers.
  3. 3. Hund’s rule: Each orbital is singly engaged with one electron having the maximum same spin capacity after that only pairing occurs.

The electron configuration is the allocation of electrons of an atom in atomic orbitals.  Electronic configuration of a particular atom is written by following the three basic principles.  If all the atomic orbitals are filled by electrons, then the atom is diamagnetic in nature.  Diamagnetic atoms are repelled by the magnetic field.  If one or more unpaired electrons are present in an atom, then that atom is paramagnetic in nature.  Paramagnetic atoms are attracted to the magnetic field.

To find: Count the number of unpaired electrons in Ca

Answer to Problem 3.102QP

There is no unpaired electron in  Ca

Explanation of Solution

Ca is placed in IIA group of the periodic table.  Its atomic number is 20.  Therefore, Ca has 20 electrons in its shells.  Ca is a s -block element.  So, its outermost electrons are located in s -shell.

The noble gas core for Ca is [Ar] , where atomic number of Ar is 18.  So, the order of filling beyond the noble gas core is 4s . The electrons in Ca beyond its noble gas core is (20 – 18) = 2 electrons.  The two electrons enter into the 4s -shell.

All the electrons are placed in the atomic orbitals by following Aufbau principle, Pauli exclusion principle and Hund’s rule

GEN COMBO CHEMISTRY: ATOMS FIRST; ALEKS 360 2S ACCESS CARD CHEMISTRY:ATOMS FIRST, Chapter 3, Problem 3.102QP , additional homework tip  2

The two electrons of Ca occupy the atomic orbitals from lowest energy to highest energy orbitals.  The maximum capacity of each orbital has two electrons which have opposite spins.  s -atomic orbitals have a single shell.  The two electrons are going into the 4s -atomic orbital.  Blue colored orbital corresponds to 4s -atomic orbital.

There is no unpaired electron present in 4s -atomic orbital in the case of Ca -atom.

(c)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The number of unpaired electrons in the given atoms should be given by knowing their ground-state electron configurations.

Concept Introduction:

An orbital is an area of space in which electrons are orderly filled.  The maximum capacity in any type of orbital is two electrons.  An atomic orbital is defined as the region of space in which the probability of finding the electrons is highest.  It is subdivided into four orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.

There are three basic principles in which orbitals are filled by the electrons.

  1. 1. Aufbau principle: In German, the word 'aufbau' means 'building up'.  The electrons are arranged in various orbitals in the order of increasing energies.
  2. 2. Pauli exclusion principle: An electron does not have all the four quantum numbers.
  3. 3. Hund’s rule: Each orbital is singly engaged with one electron having the maximum same spin capacity after that only pairing occurs.

The electron configuration is the allocation of electrons of an atom in atomic orbitals.  Electronic configuration of a particular atom is written by following the three basic principles.  If all the atomic orbitals are filled by electrons, then the atom is diamagnetic in nature.  Diamagnetic atoms are repelled by the magnetic field.  If one or more unpaired electrons are present in an atom, then that atom is paramagnetic in nature.  Paramagnetic atoms are attracted to the magnetic field.

To find: Count the number of unpaired electrons in Sc

Answer to Problem 3.102QP

The number of unpaired electron in Sc   is 1

Explanation of Solution

Sc is placed in IIIB group of the periodic table.  Its atomic number is 21.  Therefore, Sc has 21 electrons in its shells.  Sc is a d -block element.  So, its outermost electrons are located in d -subshells.

The noble gas core for Sc is [Ar] , where atomic number of Ar is 18.  So, the order of filling beyond the noble gas core is 4s and 3d . The electrons in Sc beyond its noble gas core is (21 – 18) = 3 electrons.  The three electrons enter into the 4s and 3d -subshells.

All the electrons are placed in the atomic orbitals by following Aufbau principle, Pauli exclusion principle and Hund’s rule.

GEN COMBO CHEMISTRY: ATOMS FIRST; ALEKS 360 2S ACCESS CARD CHEMISTRY:ATOMS FIRST, Chapter 3, Problem 3.102QP , additional homework tip  3

The three electrons of Sc occupy the atomic orbitals from lowest energy to highest energy orbitals.  The maximum capacity of each orbital has two electrons which have opposite spins.  s -atomic orbitals have a single shell whereas d -atomic orbitals have five subshells.  The three electrons are going into the 4s -atomic orbital followed by 3d -atomic orbital.  Blue colored orbital corresponds to 4s -atomic orbital.  Black colored orbital corresponds to 3d -atomic orbital.

The unpaired electrons are present in 3d -atomic orbitals.  There is only one unpaired electron in 3d -atomic orbital in the case of Sc -atom.

(d)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The number of unpaired electrons in the given atoms should be given by knowing their ground-state electron configurations.

Concept Introduction:

An orbital is an area of space in which electrons are orderly filled.  The maximum capacity in any type of orbital is two electrons.  An atomic orbital is defined as the region of space in which the probability of finding the electrons is highest.  It is subdivided into four orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.

There are three basic principles in which orbitals are filled by the electrons.

  1. 1. Aufbau principle: In German, the word 'aufbau' means 'building up'.  The electrons are arranged in various orbitals in the order of increasing energies.
  2. 2. Pauli exclusion principle: An electron does not have all the four quantum numbers.
  3. 3. Hund’s rule: Each orbital is singly engaged with one electron having the maximum same spin capacity after that only pairing occurs.

The electron configuration is the allocation of electrons of an atom in atomic orbitals.  Electronic configuration of a particular atom is written by following the three basic principles.  If all the atomic orbitals are filled by electrons, then the atom is diamagnetic in nature.  Diamagnetic atoms are repelled by the magnetic field.  If one or more unpaired electrons are present in an atom, then that atom is paramagnetic in nature.  Paramagnetic atoms are attracted to the magnetic field.

To find: Count the number of unpaired electrons in Ti

Answer to Problem 3.102QP

The number of unpaired electrons in Ti is 2

Explanation of Solution

Ti is placed in IVB group of the periodic table.  Its atomic number is 22.  Therefore, Ti has 22 electrons in its shells.  Ti is a d -block element.  So, its outermost electrons are located in d -subshells.

The noble gas core for Ti is [Ar] , where atomic number of Ar is 18.  So, the order of filling beyond the noble gas core is 4s and 3d . The electrons in Ti beyond its noble gas core is (22 – 18) = 4 electrons.  The four electrons enter into the 4s and 3d -subshells.

All the electrons are placed in the atomic orbitals by following Aufbau principle, Pauli exclusion principle and Hund’s rule.

GEN COMBO CHEMISTRY: ATOMS FIRST; ALEKS 360 2S ACCESS CARD CHEMISTRY:ATOMS FIRST, Chapter 3, Problem 3.102QP , additional homework tip  4

The four electrons of Ti occupy the atomic orbitals from lowest energy to highest energy orbitals.  The maximum capacity of each orbital has two electrons which have opposite spins.  s -atomic orbitals have a single shell whereas d -atomic orbitals have five subshells.  The four electrons are going into the 4s -atomic orbital followed by 3d -atomic orbital.  Blue colored orbital corresponds to 4s -atomic orbital.  Black colored orbital corresponds to 3d -atomic orbital.

The unpaired electrons are present in 3d -atomic orbitals.  There are two unpaired electrons in 3d -atomic orbital in the case of Ti -atom.

(e)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The number of unpaired electrons in the given atoms should be given by knowing their ground-state electron configurations.

Concept Introduction:

An orbital is an area of space in which electrons are orderly filled.  The maximum capacity in any type of orbital is two electrons.  An atomic orbital is defined as the region of space in which the probability of finding the electrons is highest.  It is subdivided into four orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.

There are three basic principles in which orbitals are filled by the electrons.

  1. 1. Aufbau principle: In German, the word 'aufbau' means 'building up'.  The electrons are arranged in various orbitals in the order of increasing energies.
  2. 2. Pauli exclusion principle: An electron does not have all the four quantum numbers.
  3. 3. Hund’s rule: Each orbital is singly engaged with one electron having the maximum same spin capacity after that only pairing occurs.

The electron configuration is the allocation of electrons of an atom in atomic orbitals.  Electronic configuration of a particular atom is written by following the three basic principles.  If all the atomic orbitals are filled by electrons, then the atom is diamagnetic in nature.  Diamagnetic atoms are repelled by the magnetic field.  If one or more unpaired electrons are present in an atom, then that atom is paramagnetic in nature.  Paramagnetic atoms are attracted to the magnetic field.

To find: Count the number of unpaired electrons in V

Answer to Problem 3.102QP

The number of unpaired electrons in V is 3

Explanation of Solution

V is placed in VB group of the periodic table.  Its atomic number is 23.  Therefore, V has 23 electrons in its shells.  V is a d -block element.  So, its outermost electrons are located in d -subshells.

The noble gas core for V is [Ar] , where atomic number of Ar is 18.  So, the order of filling beyond the noble gas core is 4s and 3d . The electrons in V beyond its noble gas core is (23 – 18) = 5 electrons.  The five electrons enter into the 4s and 3d -subshells.

All the electrons are placed in the atomic orbitals by following Aufbau principle, Pauli exclusion principle and Hund’s rule

GEN COMBO CHEMISTRY: ATOMS FIRST; ALEKS 360 2S ACCESS CARD CHEMISTRY:ATOMS FIRST, Chapter 3, Problem 3.102QP , additional homework tip  5

The five electrons of V occupy the atomic orbitals from lowest energy to highest energy orbitals.  The maximum capacity of each orbital has two electrons which have opposite spins.  s -atomic orbitals have a single shell whereas d -atomic orbitals have five subshells.  The five electrons are going into the 4s -atomic orbital followed by 3d -atomic orbital.  Blue colored orbital corresponds to 4s -atomic orbital.  Black colored orbital corresponds to 3d -atomic orbital.

The unpaired electrons are present in 3d -atomic orbitals.  There are three unpaired electrons in 3d -atomic orbital in the case of V -atom.

(f)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The number of unpaired electrons in the given atoms should be given by knowing their ground-state electron configurations.

Concept Introduction:

An orbital is an area of space in which electrons are orderly filled.  The maximum capacity in any type of orbital is two electrons.  An atomic orbital is defined as the region of space in which the probability of finding the electrons is highest.  It is subdivided into four orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.

There are three basic principles in which orbitals are filled by the electrons.

  1. 1. Aufbau principle: In German, the word 'aufbau' means 'building up'.  The electrons are arranged in various orbitals in the order of increasing energies.
  2. 2. Pauli exclusion principle: An electron does not have all the four quantum numbers.
  3. 3. Hund’s rule: Each orbital is singly engaged with one electron having the maximum same spin capacity after that only pairing occurs.

The electron configuration is the allocation of electrons of an atom in atomic orbitals.  Electronic configuration of a particular atom is written by following the three basic principles.  If all the atomic orbitals are filled by electrons, then the atom is diamagnetic in nature.  Diamagnetic atoms are repelled by the magnetic field.  If one or more unpaired electrons are present in an atom, then that atom is paramagnetic in nature.  Paramagnetic atoms are attracted to the magnetic field.

To find: Count the number of unpaired electrons in Cr

Answer to Problem 3.102QP

The number of unpaired electrons in Cr is 6

Explanation of Solution

Cr is placed in VIB group of the periodic table.  Its atomic number is 24.  Therefore, Cr has 24 electrons in its shells.  Cr is a d -block element.  So, its outermost electrons are located in d -subshells.

The noble gas core for Cr is [Ar] , where atomic number of Ar is 18.  So, the order of filling beyond the noble gas core is 4s and 3d . The electrons in Cr beyond its noble gas core is (24 – 18) = 6 electrons.  The six electrons enter into the 4s and 3d -subshells.

All the electrons are placed in the atomic orbitals by following Aufbau principle, Pauli exclusion principle and Hund’s rule.

GEN COMBO CHEMISTRY: ATOMS FIRST; ALEKS 360 2S ACCESS CARD CHEMISTRY:ATOMS FIRST, Chapter 3, Problem 3.102QP , additional homework tip  6

The six electrons of Cr occupy the atomic orbitals from lowest energy to highest energy orbitals.  The maximum capacity of each orbital has two electrons which have opposite spins.  s -atomic orbitals have a single shell whereas d -atomic orbitals have five subshells.  The six electrons are going into the 4s -atomic orbital followed by 3d -atomic orbital.  Blue colored orbital corresponds to 4s -atomic orbital.  Black colored orbital corresponds to 3d -atomic orbital.  One of the electrons present in 4s -atomic orbital is jumped into the 3d -atomic orbital because half-filled 3d -atomic orbital is more stable.

The unpaired electrons are present in 4s - and 3d -atomic orbitals.  There are six unpaired electrons in the case of Cr -atom.

(g)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The number of unpaired electrons in the given atoms should be given by knowing their ground-state electron configurations.

Concept Introduction:

An orbital is an area of space in which electrons are orderly filled.  The maximum capacity in any type of orbital is two electrons.  An atomic orbital is defined as the region of space in which the probability of finding the electrons is highest.  It is subdivided into four orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.

There are three basic principles in which orbitals are filled by the electrons.

  1. 1. Aufbau principle: In German, the word 'aufbau' means 'building up'.  The electrons are arranged in various orbitals in the order of increasing energies.
  2. 2. Pauli exclusion principle: An electron does not have all the four quantum numbers.
  3. 3. Hund’s rule: Each orbital is singly engaged with one electron having the maximum same spin capacity after that only pairing occurs.

The electron configuration is the allocation of electrons of an atom in atomic orbitals.  Electronic configuration of a particular atom is written by following the three basic principles.  If all the atomic orbitals are filled by electrons, then the atom is diamagnetic in nature.  Diamagnetic atoms are repelled by the magnetic field.  If one or more unpaired electrons are present in an atom, then that atom is paramagnetic in nature.  Paramagnetic atoms are attracted to the magnetic field.

To find: Count the number of unpaired electrons in Mn

Answer to Problem 3.102QP

The number of unpaired electrons in Mn is 5

Explanation of Solution

Mn is placed in VIIB group of the periodic table.  Its atomic number is 25.  Therefore, Mn has 25 electrons in its shells.  Mn is a d -block element.  So, its outermost electrons are located in d -subshells.

The noble gas core for Mn is [Ar] , where atomic number of Ar is 18.  So, the order of filling beyond the noble gas core is 4s and 3d . The electrons in Mn beyond its noble gas core is (25 – 18) = 7 electrons.  The seven electrons enter into the 4s and 3d -subshells.

All the electrons are placed in the atomic orbitals by following Aufbau principle, Pauli exclusion principle and Hund’s rule.

GEN COMBO CHEMISTRY: ATOMS FIRST; ALEKS 360 2S ACCESS CARD CHEMISTRY:ATOMS FIRST, Chapter 3, Problem 3.102QP , additional homework tip  7

The seven electrons of Mn occupy the atomic orbitals from lowest energy to highest energy orbitals.  The maximum capacity of each orbital has two electrons which have opposite spins.  s -atomic orbitals have a single shell whereas d -atomic orbitals have five subshells.  The seven electrons are going into the 4s -atomic orbital followed by 3d -atomic orbital.  Blue colored orbital corresponds to 4s -atomic orbital.  Black colored orbital corresponds to 3d -atomic orbital.

The unpaired electrons are present in 3d -atomic orbitals.  There are five unpaired electrons in 3d -atomic orbital in the case of Mn -atom.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
5. A solution of sucrose is fermented in a vessel until the evolution of CO2 ceases. Then, the product solution is analyzed and found to contain, 45% ethanol; 5% acetic acid; and 15% glycerin by weight. If the original charge is 500 kg, evaluate; e. The ratio of sucrose to water in the original charge (wt/wt). f. Moles of CO2 evolved. g. Maximum possible amount of ethanol that could be formed. h. Conversion efficiency. i. Per cent excess of excess reactant. Reactions: Inversion reaction: C12H22O11 + H2O →2C6H12O6 Fermentation reaction: C6H12O6 →→2C2H5OH + 2CO2 Formation of acetic acid and glycerin: C6H12O6 + C2H5OH + H₂O→ CH3COOH + 2C3H8O3
Show work. don't give Ai generated solution.  How many carbons and hydrogens are in the structure?
13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B 2°C. +2°C. cleavage Bond A •CH3 + 26.← Cleavage 2°C. + Bond C +3°C• CH3 2C Cleavage E 2°C. 26. weakest bond Intact molecule Strongest 3°C 20. Gund Largest argest a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. C Weakest bond A Produces Most Bond Strongest Bond Strongest Gund produces least stable radicals Weakest Stable radical b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. 13°C. formed in bound C cleavage ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. • CH3 methyl radical Formed in Gund A Cleavage c.…

Chapter 3 Solutions

GEN COMBO CHEMISTRY: ATOMS FIRST; ALEKS 360 2S ACCESS CARD CHEMISTRY:ATOMS FIRST

Ch. 3.1 - Arrange the following pairs of charged particles...Ch. 3.2 - One type of laser used in the treatment of...Ch. 3.2 - What is the wavelength (in meters) of an...Ch. 3.2 - What is the frequency (in reciprocal seconds) of...Ch. 3.2 - Which of the following sets of waves best...Ch. 3.2 - Calculate the wavelength (in nanometers) of light...Ch. 3.2 - Prob. 3.2.2SRCh. 3.2 - Prob. 3.2.3SRCh. 3.2 - When traveling through a translucent medium, such...Ch. 3.3 - Calculate the energy (in joules) of (a) a photon...Ch. 3.3 - Calculate the energy (in joules) of (a) a photon...Ch. 3.3 - (a) Calculate the wavelength (in nanometers) of...Ch. 3.3 - Calculate the energy per photon of light with...Ch. 3.3 - Calculate the wavelength (in centimeters) of light...Ch. 3.3 - Calculate the maximum kinetic energy of an...Ch. 3.3 - A clean metal surface is irradiated with light of...Ch. 3.3 - Prob. 3.3.5SRCh. 3.4 - Calculate the wavelength (in nanometers) of the...Ch. 3.4 - What is the wavelength (in nanometers) of a photon...Ch. 3.4 - What is the value of ni for an electron that emits...Ch. 3.4 - For each pair of transitions, determine which one...Ch. 3.4 - Calculate the energy of an electron in the n = 3...Ch. 3.4 - Calculate E of an electron that goes from n = 1 to...Ch. 3.4 - What is the wavelength (in meters) of light...Ch. 3.4 - What wavelength (in nanometers) corresponds to the...Ch. 3.5 - Calculate the de Broglie wavelength of the...Ch. 3.5 - Calculate the de Broglie wavelength (in...Ch. 3.5 - Use Equation 3.11 to calculate the momentum, p...Ch. 3.5 - Consider the impact of early electron diffraction...Ch. 3.5 - Calculate the de Broglie wavelength associated...Ch. 3.5 - At what speed must a helium-4 atom be traveling to...Ch. 3.5 - Determine the minimum speed required for a...Ch. 3.6 - An electron in a hydrogen atom is known to have a...Ch. 3.6 - Prob. 7PPACh. 3.6 - (a) Calculate the minimum uncertainty in the...Ch. 3.6 - Using Equation 3.13, we can calculate the minimum...Ch. 3.6 - What is the minimum uncertainty in the position of...Ch. 3.6 - What is the minimum uncertainty in the position of...Ch. 3.7 - What are the possible values for the magnetic...Ch. 3.7 - Prob. 8PPACh. 3.7 - Prob. 8PPBCh. 3.7 - Prob. 8PPCCh. 3.7 - Prob. 3.7.1SRCh. 3.7 - How many subshells are there in the shell...Ch. 3.7 - What is the total number of orbitals in the shell...Ch. 3.7 - What is the minimum value of the principal quantum...Ch. 3.8 - Prob. 3.9WECh. 3.8 - Prob. 9PPACh. 3.8 - Prob. 9PPBCh. 3.8 - Prob. 9PPCCh. 3.8 - Prob. 3.8.1SRCh. 3.8 - Prob. 3.8.2SRCh. 3.8 - In a hydrogen atom, which orbitals are higher in...Ch. 3.8 - Which of the following sets of quantum numbers, n,...Ch. 3.9 - Write the electron configuration and give the...Ch. 3.9 - Prob. 10PPACh. 3.9 - Write the electron configuration and give the...Ch. 3.9 - Prob. 10PPCCh. 3.9 - Which of the following electron configurations...Ch. 3.9 - Prob. 3.9.2SRCh. 3.9 - Which orbital diagram is collect for the...Ch. 3.10 - Without referring to Figure 3.26, write the...Ch. 3.10 - Prob. 11PPACh. 3.10 - Prob. 11PPBCh. 3.10 - Consider again the alternate universe and its...Ch. 3.10 - Which of the following electron configurations...Ch. 3.10 - Prob. 3.10.2SRCh. 3.10 - Prob. 3.10.3SRCh. 3.10 - Prob. 3.10.4SRCh. 3 - Prob. 3.1KSPCh. 3 - Which of the following electron configurations...Ch. 3 - Prob. 3.3KSPCh. 3 - Prob. 3.4KSPCh. 3 - Define these terms: potential energy, kinetic...Ch. 3 - What are the units for energy commonly employed in...Ch. 3 - A truck initially traveling at 60 km/h is brought...Ch. 3 - Describe the interconversions of forms of energy...Ch. 3 - Determine the kinetic energy of (a) a 1.25-kg mass...Ch. 3 - Determine the kinetic energy of (a) a 29-kg mass...Ch. 3 - Prob. 3.7QPCh. 3 - Determine (a) the velocity of an electron that has...Ch. 3 - Prob. 3.9QPCh. 3 - (a) How much greater is the electrostatic energy...Ch. 3 - Prob. 3.11QPCh. 3 - Prob. 3.12QPCh. 3 - List the types of electromagnetic radiation,...Ch. 3 - Prob. 3.14QPCh. 3 - Prob. 3.15QPCh. 3 - Prob. 3.16QPCh. 3 - The SI unit of time is the second, which is...Ch. 3 - Prob. 3.18QPCh. 3 - Prob. 3.19QPCh. 3 - Four waves represent light in four different...Ch. 3 - Prob. 3.21QPCh. 3 - Prob. 3.22QPCh. 3 - Prob. 3.23QPCh. 3 - What is a photon? What role did Einsteins...Ch. 3 - A photon has a wavelength of 705 nm. Calculate the...Ch. 3 - The blue color of the sky results from the...Ch. 3 - A photon has a frequency of 6.5 109 Hz. (a)...Ch. 3 - Prob. 3.28QPCh. 3 - Calculate the difference in energy (in joules)...Ch. 3 - How much more energy per photon is there in green...Ch. 3 - Prob. 3.31QPCh. 3 - A particular form of electromagnetic radiation has...Ch. 3 - Photosynthesis makes use of visible light to bring...Ch. 3 - The retina of a human eye can detect light when...Ch. 3 - Prob. 3.35QPCh. 3 - The binding energy of magnesium metal is 5.86 ...Ch. 3 - What is the kinetic energy of the ejected electron...Ch. 3 - A red light was shined onto a metal sample and the...Ch. 3 - A photoelectric experiment was performed by...Ch. 3 - Which of the following best explains why we see...Ch. 3 - One way to see the emission spectrum of hydrogen...Ch. 3 - How many lines would we see in the emission...Ch. 3 - For a hydrogen atom in which the electron has been...Ch. 3 - Prob. 3.40QPCh. 3 - Prob. 3.41QPCh. 3 - Briefly describe Bohrs theory of the hydrogen atom...Ch. 3 - Explain the meaning of the negative sign in...Ch. 3 - Consider the following energy levels of a...Ch. 3 - Prob. 3.45QPCh. 3 - Calculate the wavelength (in nanometers) of a...Ch. 3 - Calculate the frequency (hertz) and wavelength...Ch. 3 - What wavelength of light is needed to excite the...Ch. 3 - An electron in the hydrogen atom makes a...Ch. 3 - Explain why elements produce their own...Ch. 3 - Some copper-containing substances emit green light...Ch. 3 - Prob. 3.52QPCh. 3 - Prob. 3.53QPCh. 3 - Prob. 3.54QPCh. 3 - Why is Equation 3.11 meaningful only for...Ch. 3 - Prob. 3.56QPCh. 3 - Thermal neutrons are neutrons that move at speeds...Ch. 3 - Protons can be accelerated to speeds near that of...Ch. 3 - Prob. 3.59QPCh. 3 - What is the de Broglie wavelength (in nanometers)...Ch. 3 - Prob. 3.61QPCh. 3 - Prob. 3.62QPCh. 3 - What are the inadequacies of Bohrs theory?Ch. 3 - What is the Heisenberg uncertainty principle? What...Ch. 3 - Prob. 3.65QPCh. 3 - Prob. 3.66QPCh. 3 - Prob. 3.67QPCh. 3 - The speed of a thermal neutron (see Problem 3.57)...Ch. 3 - Alveoli are tiny sacs of air in the lungs. Their...Ch. 3 - In the beginning of the twentieth century, some...Ch. 3 - Suppose that photons of blue light (430 nm) are...Ch. 3 - Prob. 3.72QPCh. 3 - Prob. 3.73QPCh. 3 - Which of the four quantum numbers (n, , m, ms)...Ch. 3 - Prob. 3.75QPCh. 3 - Prob. 3.76QPCh. 3 - Indicate which of the following sets of three...Ch. 3 - Prob. 3.78QPCh. 3 - Describe the shapes of s, p, and d orbitals. How...Ch. 3 - Prob. 3.80QPCh. 3 - Describe the characteristics of an s orbital, p...Ch. 3 - Why is a boundary surface diagram useful in...Ch. 3 - Prob. 3.83QPCh. 3 - Give the values of the four quantum numbers of an...Ch. 3 - Describe how a 1s orbital and a 2s orbital are...Ch. 3 - Prob. 3.86QPCh. 3 - Prob. 3.87QPCh. 3 - Make a chart of all allowable orbitals in the...Ch. 3 - Prob. 3.89QPCh. 3 - Prob. 3.90QPCh. 3 - A 3s orbital is illustrated here. Using this as a...Ch. 3 - Prob. 3.92QPCh. 3 - Prob. 3.93QPCh. 3 - State the Aufbau principle, and explain the role...Ch. 3 - Indicate the total number of (a) p electrons in N...Ch. 3 - Calculate the total number of electrons that can...Ch. 3 - Determine the total number of electrons that can...Ch. 3 - Determine the maximum number of electrons that can...Ch. 3 - Prob. 3.99QPCh. 3 - The electron configuration of an atom in the...Ch. 3 - List the following atoms in order of increasing...Ch. 3 - Determine the number of unpaired electrons in each...Ch. 3 - Determine the number of impaired electrons in each...Ch. 3 - Determine the number of unpaired electrons in each...Ch. 3 - Prob. 3.105QPCh. 3 - Portions of orbital diagrams representing the...Ch. 3 - Prob. 3.107QPCh. 3 - Prob. 3.108QPCh. 3 - Prob. 3.109QPCh. 3 - Define the following terms and give an example of...Ch. 3 - Explain why the ground-state electron...Ch. 3 - Write the election configuration of a xenon core.Ch. 3 - Comment on the correctness of the following...Ch. 3 - Prob. 3.114QPCh. 3 - Prob. 3.115QPCh. 3 - Write the ground-state electron configurations for...Ch. 3 - Write the ground-state electron configurations for...Ch. 3 - What is the symbol of the element with the...Ch. 3 - Prob. 3.119QPCh. 3 - Prob. 3.120QPCh. 3 - Discuss the current view of the correctness of the...Ch. 3 - Distinguish carefully between the following terms:...Ch. 3 - What is the maximum number of electrons in an atom...Ch. 3 - Prob. 3.124QPCh. 3 - Prob. 3.125QPCh. 3 - A baseball pitchers fastball has been clocked at...Ch. 3 - A ruby laser produces radiation of wavelength 633...Ch. 3 - Four atomic energy levels of an atom are shown...Ch. 3 - Prob. 3.129QPCh. 3 - Spectral lines of the Lyman and Balmer series do...Ch. 3 - Only a fraction of the electric energy supplied to...Ch. 3 - The figure here illustrates a series of...Ch. 3 - When one of heliums electrons is removed, the...Ch. 3 - The retina of a human eye can detect light when...Ch. 3 - An electron in an excited state in a hydrogen atom...Ch. 3 - Prob. 3.136QPCh. 3 - The election configurations described in this...Ch. 3 - Draw the shapes (boundary surfaces) of the...Ch. 3 - Prob. 3.139QPCh. 3 - Consider the graph here. (a) Calculate the binding...Ch. 3 - Scientists have found interstellar hydrogen atoms...Ch. 3 - Ionization energy is the minimum energy required...Ch. 3 - Prob. 3.143QPCh. 3 - Prob. 3.144QPCh. 3 - The cone cells of the human eye are sensitive to...Ch. 3 - (a) An electron in the ground state of the...Ch. 3 - Prob. 3.147QPCh. 3 - Prob. 3.148QPCh. 3 - When an election makes a transition between energy...Ch. 3 - Blackbody radiation is the term used to describe...Ch. 3 - Suppose that photons of red light (675 nm) are...Ch. 3 - In an election microscope, electrons are...Ch. 3 - According to Einsteins special theory of...Ch. 3 - The mathematical equation for studying the...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Chemistry For Today
Chemistry
ISBN:9781285644561
Author:Seager
Publisher:Cengage
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Quantum Numbers, Atomic Orbitals, and Electron Configurations; Author: Professor Dave Explains;https://www.youtube.com/watch?v=Aoi4j8es4gQ;License: Standard YouTube License, CC-BY
QUANTUM MECHANICAL MODEL/Atomic Structure-21E; Author: H to O Chemistry;https://www.youtube.com/watch?v=mYHNUy5hPQE;License: Standard YouTube License, CC-BY