(a)
Interpretation:
The values of the quantum numbers associated with the given orbitals should be identified using the concept of quantum numbers.
Concept Introduction:
Each electron in an atom is described by four different quantum numbers. The first three (n, l, ml) specify the particular orbital of interest, and the fourth (ms) specifies how many electrons can occupy that orbital.
Principal Quantum Number (n)
The principal quantum number (n) assigns the size of the orbital and specifies the energy of an electron. If the value of n is larger, then the average distance of an electron in the orbital from the nucleus will be greater. Therefore the size of the orbital is large. The principal quantum numbers have the integral values of 1, 2, 3 and so forth and it corresponds to the quantum number in
The angular momentum quantum number (l) explains the shape of the atomic orbital. The values of l are integers which depend on the value of the principal quantum number, n. For a given value of n, the possible values of l range are from 0 to n − 1. If n = 1, there is only one possible value of l (l=0). If n = 2, there are two values of l: 0 and 1. If n = 3, there are three values of l: 0, 1, and 2. The value of l is selected by the letters s, p, d, and f. If l = 0, we have an s orbital; if l = 1, we have a p orbital; if l = 2, we have a d orbital and finally if l = 3, we have a f orbital. A collection of orbitals with the same value of n is called a shell. One or more orbitals with the same n and l values are referred to a subshell (sublevel). The value of l also has a slight effect on the energy of the subshell; the energy of the subshell increases with l (s < p < d < f).
Magnetic Quantum Number (ml)
The magnetic quantum number (ml) explains the orientation of the orbital in space. The value of ml depends on the value of l in a subshell. This number divides the subshell into individual orbitals which hold the electrons. For a certain value of l, there are (2l + 1) integral values of ml which is explained as follows:
ml = ‒ l, ..., 0, ..., +l
If l = 0, there is only one possible value of ml: 0.
If l = 1, then there are three values of ml: −1, 0, and +1.
If l = 2, there are five values of ml, namely, −2, −1, 0, +1, and +2.
If l = 3, there are seven values of ml, namely, −3, −2, −1, 0, +1, +2, and +3, and so on.
The number of ml values indicates the number of orbitals in a subshell with a particular l value. Therefore, each ml value refers to a different orbital.
Electron Spin Quantum Number (ms)
It specifies the orientation of the spin axis of an electron. An electron can spin in only one of two directions. There are two possible ways to represent ms values. They are +½ and ‒½. One electron spins in the clockwise direction. Another electron spins in the anticlockwise direction. But, no two electrons should have the same spin quantum number.
To find: Get the values of the quantum numbers (n, l, ml, ms) associated with the given orbital (a) 2p
Get the values of the quantum numbers ‘n’, ‘l’ in (a)
(b)
Interpretation:
The values of the quantum numbers associated with the given orbitals should be identified using the concept of quantum numbers.
Concept Introduction:
Each electron in an atom is described by four different quantum numbers. The first three (n, l, ml) specify the particular orbital of interest, and the fourth (ms) specifies how many electrons can occupy that orbital.
Principal Quantum Number (n)
The principal quantum number (n) assigns the size of the orbital and specifies the energy of an electron. If the value of n is larger, then the average distance of an electron in the orbital from the nucleus will be greater. Therefore the size of the orbital is large. The principal quantum numbers have the integral values of 1, 2, 3 and so forth and it corresponds to the quantum number in Bohr’s model of the hydrogen atom. If all orbitals have the same value of ‘n’, they are said to be in the same shell (level). The total number of orbitals for a given n value is n2. As the value of ‘n’ increases, the energy of the electron also increases.
Angular Momentum Quantum Number (l)
The angular momentum quantum number (l) explains the shape of the atomic orbital. The values of l are integers which depend on the value of the principal quantum number, n. For a given value of n, the possible values of l range are from 0 to n − 1. If n = 1, there is only one possible value of l (l=0). If n = 2, there are two values of l: 0 and 1. If n = 3, there are three values of l: 0, 1, and 2. The value of l is selected by the letters s, p, d, and f. If l = 0, we have an s orbital; if l = 1, we have a p orbital; if l = 2, we have a d orbital and finally if l = 3, we have a f orbital. A collection of orbitals with the same value of n is called a shell. One or more orbitals with the same n and l values are referred to a subshell (sublevel). The value of l also has a slight effect on the energy of the subshell; the energy of the subshell increases with l (s < p < d < f).
Magnetic Quantum Number (ml)
The magnetic quantum number (ml) explains the orientation of the orbital in space. The value of ml depends on the value of l in a subshell. This number divides the subshell into individual orbitals which hold the electrons. For a certain value of l, there are (2l + 1) integral values of ml which is explained as follows:
ml = ‒ l, ..., 0, ..., +l
If l = 0, there is only one possible value of ml: 0.
If l = 1, then there are three values of ml: −1, 0, and +1.
If l = 2, there are five values of ml, namely, −2, −1, 0, +1, and +2.
If l = 3, there are seven values of ml, namely, −3, −2, −1, 0, +1, +2, and +3, and so on.
The number of ml values indicates the number of orbitals in a subshell with a particular l value. Therefore, each ml value refers to a different orbital.
Electron Spin Quantum Number (ms)
It specifies the orientation of the spin axis of an electron. An electron can spin in only one of two directions. There are two possible ways to represent ms values. They are +½ and ‒½. One electron spins in the clockwise direction. Another electron spins in the anticlockwise direction. But, no two electrons should have the same spin quantum number.
To find: Get the values of the quantum numbers (n, l, ml, ms) associated with the given orbital (b) 3s
Get the values of the quantum numbers ‘n’, ‘l’ in (b)
(c)
Interpretation:
The values of the quantum numbers associated with the given orbitals should be identified using the concept of quantum numbers.
Concept Introduction:
Each electron in an atom is described by four different quantum numbers. The first three (n, l, ml) specify the particular orbital of interest, and the fourth (ms) specifies how many electrons can occupy that orbital.
Principal Quantum Number (n)
The principal quantum number (n) assigns the size of the orbital and specifies the energy of an electron. If the value of n is larger, then the average distance of an electron in the orbital from the nucleus will be greater. Therefore the size of the orbital is large. The principal quantum numbers have the integral values of 1, 2, 3 and so forth and it corresponds to the quantum number in Bohr’s model of the hydrogen atom. If all orbitals have the same value of ‘n’, they are said to be in the same shell (level). The total number of orbitals for a given n value is n2. As the value of ‘n’ increases, the energy of the electron also increases.
Angular Momentum Quantum Number (l)
The angular momentum quantum number (l) explains the shape of the atomic orbital. The values of l are integers which depend on the value of the principal quantum number, n. For a given value of n, the possible values of l range are from 0 to n − 1. If n = 1, there is only one possible value of l (l=0). If n = 2, there are two values of l: 0 and 1. If n = 3, there are three values of l: 0, 1, and 2. The value of l is selected by the letters s, p, d, and f. If l = 0, we have an s orbital; if l = 1, we have a p orbital; if l = 2, we have a d orbital and finally if l = 3, we have a f orbital. A collection of orbitals with the same value of n is called a shell. One or more orbitals with the same n and l values are referred to a subshell (sublevel). The value of l also has a slight effect on the energy of the subshell; the energy of the subshell increases with l (s < p < d < f).
Magnetic Quantum Number (ml)
The magnetic quantum number (ml) explains the orientation of the orbital in space. The value of ml depends on the value of l in a subshell. This number divides the subshell into individual orbitals which hold the electrons. For a certain value of l, there are (2l + 1) integral values of ml which is explained as follows:
ml = ‒ l, ..., 0, ..., +l
If l = 0, there is only one possible value of ml: 0.
If l = 1, then there are three values of ml: −1, 0, and +1.
If l = 2, there are five values of ml, namely, −2, −1, 0, +1, and +2.
If l = 3, there are seven values of ml, namely, −3, −2, −1, 0, +1, +2, and +3, and so on.
The number of ml values indicates the number of orbitals in a subshell with a particular l value. Therefore, each ml value refers to a different orbital.
Electron Spin Quantum Number (ms)
It specifies the orientation of the spin axis of an electron. An electron can spin in only one of two directions. There are two possible ways to represent ms values. They are +½ and ‒½. One electron spins in the clockwise direction. Another electron spins in the anticlockwise direction. But, no two electrons should have the same spin quantum number.
To find: Get the values of the quantum numbers (n, l, ml, ms) associated with the given orbital (c) 5d
Get the values of the quantum numbers ‘n’, ‘l’ in (c)
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Chemistry: Atoms First
- Which carbocation is more stable?arrow_forwardAre the products of the given reaction correct? Why or why not?arrow_forwardThe question below asks why the products shown are NOT the correct products. I asked this already, and the person explained why those are the correct products, as opposed to what we would think should be the correct products. That's the opposite of what the question was asking. Why are they not the correct products? A reaction mechanism for how we arrive at the correct products is requested ("using key intermediates"). In other words, why is HCl added to the terminal alkene rather than the internal alkene?arrow_forward
- My question is whether HI adds to both double bonds, and if it doesn't, why not?arrow_forwardStrain Energy for Alkanes Interaction / Compound kJ/mol kcal/mol H: H eclipsing 4.0 1.0 H: CH3 eclipsing 5.8 1.4 CH3 CH3 eclipsing 11.0 2.6 gauche butane 3.8 0.9 cyclopropane 115 27.5 cyclobutane 110 26.3 cyclopentane 26.0 6.2 cycloheptane 26.2 6.3 cyclooctane 40.5 9.7 (Calculate your answer to the nearest 0.1 energy unit, and be sure to specify units, kJ/mol or kcal/mol. The answer is case sensitive.) H. H Previous Nextarrow_forwardA certain half-reaction has a standard reduction potential Ered +1.26 V. An engineer proposes using this half-reaction at the anode of a galvanic cell that must provide at least 1.10 V of electrical power. The cell will operate under standard conditions. Note for advanced students: assume the engineer requires this half-reaction to happen at the anode of the cell. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the minimum. Round your answer to 2 decimal places. If there is no lower limit, check the "no" box.. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the maximum. Round your answer to 2 decimal places. If there is no upper limit, check the "no" box. yes, there is a minimum. 1 red Πν no minimum Oyes, there is a maximum. 0 E red Dv By using the information in the ALEKS…arrow_forward
- (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)!arrow_forward. 3°C with TH 12. (10pts total) Provide the major product for each reaction depicted below. If no reaction occurs write NR. Assume heat dissipation is carefully controlled in the fluorine reaction. 3H 24 total (30) 24 21 2h • 6H total ● 8H total 34 래 Br2 hv major product will be most Substituted 12 hv Br NR I too weak of a participate in P-1 F₂ hv Statistically most favored product will be major = most subst = thermo favored hydrogen atom abstractor to LL Farrow_forwardFive chemistry project topic that does not involve practicalarrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning