The element which has a single atom travelling at 15 percent of the speed of light and having de Broglie wavelength of 1 .06 × 10 − 16 m should be found using the concept of De Broglie’s hypothesis. Concept Introduction: De Broglie’s hypothesis explains the behaviour of waves. Waves can behave like particles while particles can exhibit wave like properties. De Broglie deduced that the particle and wave properties are related by the following expression: λ = h mu where, λ is the wavelength associated with a moving particle; h is Planck’s constant; m is the mass of the particle and u is the velocity of the moving particle. To find: The element which has a single atom travelling at 15 percent of the speed of light and having de Broglie wavelength of 1 .06 × 10 − 16 m
The element which has a single atom travelling at 15 percent of the speed of light and having de Broglie wavelength of 1 .06 × 10 − 16 m should be found using the concept of De Broglie’s hypothesis. Concept Introduction: De Broglie’s hypothesis explains the behaviour of waves. Waves can behave like particles while particles can exhibit wave like properties. De Broglie deduced that the particle and wave properties are related by the following expression: λ = h mu where, λ is the wavelength associated with a moving particle; h is Planck’s constant; m is the mass of the particle and u is the velocity of the moving particle. To find: The element which has a single atom travelling at 15 percent of the speed of light and having de Broglie wavelength of 1 .06 × 10 − 16 m
Solution Summary: The author analyzes De Broglie's hypothesis, which explains the behaviour of waves. Waves behave like particles while particles exhibit wavelike properties.
Definition Definition Rate at which light travels, measured in a vacuum. The speed of light is a universal physical constant used in many areas of physics, most commonly denoted by the letter c . The value of the speed of light c = 299,792,458 m/s, but for most of the calculations, the value of the speed of light is approximated as c = 3 x 10 8 m/s.
Chapter 3, Problem 3.129QP
Interpretation Introduction
Interpretation:
The element which has a single atom travelling at 15 percent of the speed of light and having de Broglie wavelength of 1.06 × 10−16 m should be found using the concept of De Broglie’s hypothesis.
Concept Introduction:
De Broglie’s hypothesis explains the behaviour of waves. Waves can behave like particles while particles can exhibit wave like properties. De Broglie deduced that the particle and wave properties are related by the following expression:
λ =hmu
where, λ is the wavelength associated with a moving particle; h is Planck’s constant; m is the mass of the particle and u is the velocity of the moving particle.
To find: The element which has a single atom travelling at 15 percent of the speed of light and having de Broglie wavelength of 1.06 × 10−16 m
How exactly is carbon disulfide used in industry? Specifically, where does it come in during rubber or textile production and what is the chemical processes?
A researcher has developed a new analytical method to determine the percent by mass iron in solids. To test the new method, the researcher purchases a standard reference material sample that is 2.85% iron by mass. Analysis of the iron standard with the new method returns values of 2.75%, 2.89%, 2.77%, 2.81%, and 2.87%. Does the new method produce a result that is significantly different from the standard value at the 95% confidence level?
Create a drawing of an aceral with at
least 2 isopropoxy groups, and a total
of 11 carbon atoms
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.