(a)
Interpretation:
The formula of copper (I) sulfite needs to be determined.
Concept Introduction:
When the number of electrons increases or decreases from the

Answer to Problem 3.82P
Explanation of Solution
The given name is copper (I) sulfite.
Here, copper is cation and sulfite is anion. The cation and anion with their charges are represented as follows:
The ratio of charge of cation to anion is as follows:
Therefore, the formula of the compound will be:
(b)
Interpretation:
The formula of aluminum nitrate needs to be determined.
Concept Introduction:
When the number of electrons increases or decreases from the atomic number, ions are formed. Cation is a positively charged ion formed by losing electron/s and anion is a negatively charged ion formed by gaining electron/s. While writing name of the ionic compounds, the name of cation is always written first followed by the name of the anion. In order to form an ionic compound, the cation and anion combine in such a way that the total charge is zero.

Answer to Problem 3.82P
Explanation of Solution
The given name is aluminum nitrate.
Here, aluminum is cation and nitrate is anion. The cation and anion with their charges are represented as follows:
The ratio of charge of cation to anion is as follows:
Therefore, the formula of the compound will be:
(c)
Interpretation:
The formula of tin (II) acetate needs to be determined.
Concept Introduction:
When the number of electrons increases or decreases from the atomic number, ions are formed. Cation is a positively charged ion formed by losing electron/s and anion is a negatively charged ion formed by gaining electron/s. While writing name of the ionic compounds, the name of cation is always written first followed by the name of the anion. In order to form an ionic compound, the cation and anion combine in such a way that the total charge is zero.

Answer to Problem 3.82P
Explanation of Solution
The given name is tin (II) acetate
Here, tin is cation and acetate is anion. The cation and anion with their charges are represented as follows:
The ratio of charge of cation to anion is as follows:
Therefore, the formula of the compound will be:
(d)
Interpretation:
The formula of lead (IV) carbonate needs to be determined.
Concept Introduction:
When the number of electrons increases or decreases from the atomic number, ions are formed. Cation is a positively charged ion formed by losing electron/s and anion is a negatively charged ion formed by gaining electron/s. While writing name of the ionic compounds, the name of cation is always written first followed by the name of the anion. In order to form an ionic compound, the cation and anion combine in such a way that the total charge is zero.

Answer to Problem 3.82P
Explanation of Solution
The given name is lead (IV) carbonate.
Here, lead is cation and carbonate is anion. The cation and anion with their charges are represented as follows:
The ratio of charge of cation to anion is as follows:
Therefore, the formula of the compound will be:
(e)
Interpretation:
The formula of zinc hydrogen phosphate needs to be determined.
Concept Introduction:
When the number of electrons increases or decreases from the atomic number, ions are formed. Cation is a positively charged ion formed by losing electron/s and anion is a negatively charged ion formed by gaining electron/s. While writing name of the ionic compounds, the name of cation is always written first followed by the name of the anion. In order to form an ionic compound, the cation and anion combine in such a way that the total charge is zero.

Answer to Problem 3.82P
Explanation of Solution
The given name is zinc hydrogen phosphate.
Here, zinc is cation and hydrogen phosphate is anion. The cation and anion with their charges are represented as follows:
The ratio of charge of cation to anion is as follows:
Therefore, the formula of the compound will be:
(f)
Interpretation:
The formula of manganese dihydrogen phosphate needs to be determined.
Concept Introduction:
When the number of electrons increases or decreases from the atomic number, ions are formed. Cation is a positively charged ion formed by losing electron/s and anion is a negatively charged ion formed by gaining electron/s. While writing name of the ionic compounds, the name of cation is always written first followed by the name of the anion. In order to form an ionic compound, the cation and anion combine in such a way that the total charge is zero.

Answer to Problem 3.82P
Explanation of Solution
The given name is manganese dihydrogen phosphate.
Here, manganese is cation and dihydrogen phosphate is anion. The cation and anion with their charges are represented as follows:
The ratio of charge of cation to anion is as follows:
Therefore, the formula of the compound will be:
(g)
Interpretation:
The formula of ammonium cyanide needs to be determined.
Concept Introduction:
When the number of electrons increases or decreases from the atomic number, ions are formed. Cation is a positively charged ion formed by losing electron/s and anion is a negatively charged ion formed by gaining electron/s. While writing name of the ionic compounds, the name of cation is always written first followed by the name of the anion. In order to form an ionic compound, the cation and anion combine in such a way that the total charge is zero.

Answer to Problem 3.82P
Explanation of Solution
The given name is ammonium cyanide.
Here, ammonium is cation and cyanide is anion. The cation and anion with their charges are represented as follows:
The ratio of charge of cation to anion is as follows:
Therefore, the formula of the compound will be:
(h)

Answer to Problem 3.82P
Explanation of Solution
The name of the compound is iron (II) nitrate.
Here, iron is cation and nitrate is anion. The cation and anion with their charges are represented as follows:
The ratio of charge of cation to anion is as follows:
Therefore, the formula of the compound will be:
Want to see more full solutions like this?
Chapter 3 Solutions
ALEKS 360 ACCESS CARD F/GEN. ORG.CHEM
- CHEM 310 Quiz 8 Organic Chemistry II Due: Tuesday, April 25th, at 11:59 pm. This quiz is open textbook / open notes - but you must work alone. You cannot use the internet or the solutions manual for the book. Scan in your work and record an explanation of your mechanism. You may record this any way that you like. One way would be to start an individual Zoom meeting, start recording, "share your screen" and then talk through the problem. This will be converted to an .mp4 file that you can upload into Canvas using the "record/upload media" feature. Pyridine, benzoic acid and benzene are dissolved in ethyl acetate. Design and provide a plan / flow chart for separating and isolating each of these components. Pyridine and benzene are liquids at room temperature. Benzoic acid is a solid. You have ethyl acetate, 2M NaOH, 2M HCI and anhydrous MgSO4 available, as well as all the glassware and equipment that you used in the organic lab this year. Provide accurate acid/base reactions for any…arrow_forwardCan anyone help me solve this step by step. Thank you in advaarrow_forwardPlease draw the mechanism for this Friedel-crafts acylation reaction using arrowsarrow_forward
- Draw the Fischer projection of D-fructose. Click and drag to start drawing a structure. Skip Part Check AP 14 tv SC F1 F2 80 F3 a F4 ! 2 # 3 CF F5 75 Ax MacBook Air 894 $ 5olo % Λ 6 > W F6 K F7 &arrow_forwardConsider this step in a radical reaction: Y What type of step is this? Check all that apply. Draw the products of the step on the right-hand side of the drawing area below. If more than one set of products is possible, draw any set. Also, draw the mechanism arrows on the left-hand side of the drawing area to show how this happens. ionization propagation initialization passivation none of the abovearrow_forward22.16 The following groups are ortho-para directors. (a) -C=CH₂ H (d) -Br (b) -NH2 (c) -OCHS Draw a contributing structure for the resonance-stabilized cation formed during elec- trophilic aromatic substitution that shows the role of each group in stabilizing the intermediate by further delocalizing its positive charge. 22.17 Predict the major product or products from treatment of each compound with Cl₁/FeCl₂- OH (b) NO2 CHO 22.18 How do you account for the fact that phenyl acetate is less reactive toward electro- philic aromatic substitution than anisole? Phenyl acetate Anisole CH (d)arrow_forward
- Show how to convert ethyl benzene to (a) 2,5-dichlorobenzoic acid and (b) 2,4-dichlorobenzoic acid.arrow_forwardHelp me solve this problem. Thank you in advance.arrow_forward22.7 Predict the monoalkylated products of the following reactions with benzene. (a) AlCl3 Ya (b) AlCl3 (c) H3PO4 (d) 22.8 Think-Pair-Share AICI3 The reaction below is a common electrophilic aromatic substitution. SO3 H₂SO4 SO₂H (a) Draw the reaction mechanism for this reaction using HSO,+ as the electrophile. (b) Sketch the reaction coordinate diagram, where the product is lower in energy than the starting reactant. (c) Which step in the reaction mechanism is highest in energy? Explain. (d) Which of the following reaction conditions could be used in an electrophilic aro- matic substitution with benzene to provide substituted phenyl derivatives? (i) AICI3 HNO3 H₂SO4 K2Cr2O7 (iii) H₂SO4 (iv) H₂PO₁arrow_forward
- Is an acid-base reaction the only type of reaction that would cause leavening products to rise?arrow_forwardHelp me understand this! Thank you in advance.arrow_forward22.22 For each compound, indicate which group on the ring is more strongly activating and then draw a structural formula of the major product formed by nitration of the compound. Br CHO (a) CH3 (b) (c) CHO CH3 SO₂H (d) ☑ OCHS NO₂ (e) (f) CO₂H NHCOCH3 NHCOCH, (h) CHS 22.23 The following molecules each contain two aromatic rings. (b) 000-100- H3C (a) (c) Which ring in each undergoes electrophilic aromatic substitution more readily? Draw the major product formed on nitration.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning




