(a)
Interpretation:
The cations & anions derived from Barium & Bromine should be combined in order to get an electrically neutralized ionic compound.
Concept introduction:
An ionic compound forms by the mutual attraction of 2 oppositely charged ions called cation & anion. Cationis derived from Barium (Ba), while anion is derived from Bromine (Br).

Answer to Problem 3.60P
BaBr2
Explanation of Solution
Cations are derived from metals. A cation is formed by removing 1 or few electrons from a metal atom. As electrons are negatively charged, the removal of electrons (negative charges) gives a positive charge to the rest of the atom.
Oppositely anions are derived from non-metal elements. An anion is formed by gaining 1 or few electrons. As electrons are negatively charged, the gaining of electrons (negative charges) gives a negative charge to the rest of the atom.
So, in the given two elements metal is Barium (Ba). So cation is derived from Ba. The only cation derived from Ba is Ba2+. The cation is derived by removing 2 electrons from Ba.
Ba → Ba2+ + 2e (electrons are indicated as e)
Bromine is the non-metal which is forming anion, Br- / Bromide, by gaining 1 electron to a Br atom.
Br + e → Br-
From this cation & anion an ionic compound is formed. Usually a simple ionic compound is electrically neutral. So cation & anion combined in a way to neutralize opposite charges.
As Ba2+ is having +2 positive charge, 2 Br- ions should becombined.
So the ionic compound form from Barium & Bromine is BaBr2.
(b)
Interpretation:
The cations & anions derived from Aluminum&Sulfur should be combined in order to get an electrically neutralized ionic compound.
Concept introduction:
An ionic compound forms by the mutual attraction of 2 oppositely charged ions called cation & anion. Cation is derived from Aluminum (Al), while anion is derived from Sulfur(S).

Answer to Problem 3.60P
Al2S3
Explanation of Solution
Cations are derived from metals. A cation is formed by removing 1 or few electrons from a metal atom. As electrons are negatively charged, the removal of electrons (negative charges) gives a positive charge to the rest of the atom.
Oppositely anions are derived from non-metal elements. An anion is formed by gaining 1 or few electrons. As electrons are negatively charged, the gaining of electrons (negative charges) gives a negative charge to the rest of the atom.
In the given two elements metal is Aluminum (Al). So cation is derived from Al. The only cation derived from Al is Al3+. The cation is derived by removing 3 electrons from Al.
Al → Al3++ 3e (electrons are indicated as e)
Sulfur is the non-metal which is forming anion, S2-/Sulfide, by gaining 2 electrons.
S + 2e → S2-
From this cation & anion an ionic compound is formed. Usually a simple ionic compound is electrically neutral. So cation & anion combined in a way to neutralize opposite charges.
Al3+ has a +3 charge. S2-/ Sulfide ion has a -2 charge. So S2-: Al3+ should be combined in a ratio of 3: 2, to maintain the charge neutrality. This is the first ratio that the both values are integers.
The above ratio is proven correct by the following simple calculation to balance charges.
(Equals zero because the ionic compound should have no net charge)
So in the ionic compound form from Aluminum & Sulfur there should be 2 Al3+s & 3 S2- s. So the compound is Al2S3
(c)
Interpretation:
The cations & anions derived from Manganese&Chlorine should be combined in order to get an electrically neutralized ionic compound.
Concept introduction:
An ionic compound forms by the mutual attraction of 2 oppositely charged ions called cation & anion. Cation is derived from Manganese (Mn), while anion is derived from Chlorine (Cl).

Answer to Problem 3.60P
MnCl2
Explanation of Solution
Cations are derived from metals. A cation is formed by removing 1 or few electrons from a metal atom. As electrons are negatively charged, the removal of electrons (negative charges) gives a positive charge to the rest of the atom.
Oppositely anions are derived from non-metal elements. An anion is formed by gaining 1 or few electrons. As electrons are negatively charged, the gaining of electrons (negative charges) gives a negative charge to the rest of the atom.
So in the given two elements metal is Manganese (Mn). So cation is derived from Mn. Manganese has the ability to form several cations like Mn2+, Mn3+&Mn4+. Out of them the most stable cation is Mn2+. This cation is derived by removing 2 electrons from Mn.
Mn → Mn2+ + 2e (electrons are indicated as e)
Chlorine is the non-metal which is forming anion, Cl-/Chloride, by gaining 1 electron to a Cl atom.
Cl + e → Cl-
From this cation & anion an ionic compound is formed. Usually a simple ionic compound is electrically neutral. So cation & anion combined in a way to neutralize opposite charges.
As Mn2+ is having +2 positive charge, 2 Cl- ions should becombined.
So, the ionic compound form from Manganese&Chlorine is MnCl2.
(d)
Interpretation:
The cations & anions derived from Zinc&Sulfur should be combined in order to get an electrically neutralized ionic compound.
Concept introduction:
An ionic compound forms by the mutual attraction of 2 oppositely charged ions called cation & anion. Cation is derived from Zinc (Zn), while anion is derived from Sulfur (S).

Answer to Problem 3.60P
ZnS
Explanation of Solution
Cations are derived from metals. A cation is formed by removing 1 or few electrons from a metal atom. As electrons are negatively charged, the removal of electrons (negative charges) gives a positive charge to the rest of the atom.
Oppositely anions are derived from non-metal elements. An anion is formed by gaining 1 or few electrons. As electrons are negatively charged, the gaining of electrons (negative charges) gives a negative charge to the rest of the atom.
So in the given two elements metal is Zinc (Zn). So cation is derived from Zn. The most common & stable cation derived from Zn is Zn2+. The cation is derived by removing 2 electrons from Zn.
Zn → Zn2+ + 2e (electrons are indicated as e)
Sulfur is the non-metal which is forming anion, S2- / Sulfide, by gaining 2 electrons.
S + 2e → S2-
From this cation & anion an ionic compound is formed. Usually a simple ionic compound is electrically neutral. So cation & anion combined in a way to neutralize opposite charges.
As both Zn2+& S2-is having +2 & -2 charge, one cation & one anion are combined to form the Compound ZnS.
So, the ionic compound form from Zinc&Sulfur is ZnS.
(e)
Interpretation:
The cations & anions derived from Magnesium&Fluorine should be combined in order to get an electrically neutralized ionic compound.
Concept introduction:
An ionic compound forms by the mutual attraction of 2 oppositely charged ions called cation & anion. Cation is derived from Magnesium (Mg), while anion is derived from Fluorine (F).

Answer to Problem 3.60P
MgF2
Explanation of Solution
Cations are derived from metals. A cation is formed by removing 1 or few electrons from a metal atom. As electrons are negatively charged, the removal of electrons (negative charges) gives a positive charge to the rest of the atom.
Oppositely anions are derived from non-metal elements. An anion is formed by gaining 1 or few electrons. As electrons are negatively charged, the gaining of electrons (negative charges) gives a negative charge to the rest of the atom.
So in the given two elements metal is Magnesium (Mg). So cation is derived from Mg. The only cation derived from Mg is Mg2+. The cation is derived by removing 2 electrons from Mg.
Mg → Mg2+ + 2e (electrons are indicated as e)
Fluorine is the non-metal, which is forming anion, F- / Fluoride, by gaining 1 electron to a F atom.
F + e → F-
From this cation & anion an ionic compound is formed. Usually a simple ionic compound is electrically neutral. So cation & anion combined in a way to neutralize opposite charges.
As Mg2+ is having +2 positive charge, 2 F- ions should becombined.
So the ionic compound form from Magnesium&Fluorine is MgF2.
Want to see more full solutions like this?
Chapter 3 Solutions
ALEKS 360 ACCESS CARD F/GEN. ORG.CHEM
- Q5: Label each chiral carbon in the following molecules as R or S. Make sure the stereocenter to which each of your R/S assignments belong is perfectly clear to the grader. (8pts) R OCH 3 CI H S 2pts for each R/S HO R H !!! I OH CI HN CI R Harrow_forwardCalculate the proton and carbon chemical shifts for this structurearrow_forwardA. B. b. Now consider the two bicyclic molecules A. and B. Note that A. is a dianion and B. is a neutral molecule. One of these molecules is a highly reactive compound first characterized in frozen noble gas matrices, that self-reacts rapidly at temperatures above liquid nitrogen temperature. The other compound was isolated at room temperature in the early 1960s, and is a stable ligand used in organometallic chemistry. Which molecule is the more stable molecule, and why?arrow_forward
- A mixture of C7H12O2, C9H9OCl, biphenyl and acetone was put together in a gas chromatography tube. Please decide from the GC resutls which correspond to the peak for C7,C9 and biphenyl and explain the reasoning based on GC results. Eliminate unnecessary peaks from Gas Chromatography results.arrow_forwardIs the molecule chiral, meso, or achiral? CI .CH3 H₂C CIarrow_forwardPLEASE HELP ! URGENT!arrow_forward
- Identify priority of the substituents: CH3arrow_forwardHow many chiral carbons are in the molecule? OH F CI Brarrow_forwardA mixture of three compounds Phen-A, Acet-B and Rin-C was analyzed using TLC with 1:9 ethanol: hexane as the mobile phase. The TLC plate showed three spots of R, 0.1 and 0.2 and 0.3. Which of the three compounds (Phen-A; Acet-B or Rin-C) would have the highest (Blank 1), middle (Blank 2) and lowest (Blank 3) spot respectively? 0 CH: 0 CH, 0 H.C OH H.CN OH Acet-B Rin-C phen-A A A <arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning





