(a)
Interpretation:
The group number of the given electron-dot symbol should be stated.
Concept Introduction:
In an electron-dot symbol, dots are used to represent valence electrons around the elemental symbol.
When drawing or understanding an electron-dot symbol of an element, one should consider below facts;
- Each dot represents 1 electron.
- The dots are placed on the four sides of the elemental symbol.
- For 1 to 4 valence electrons, single dots are used.
- For more than 4 electrons, the dots are paired.
Valence electrons are the most loosely bound electrons of an element. They are in the outermost shell, which is also called "valence shell". Chemical properties of an element and its place in the periodic table depend on the number of valence electrons of that element.
For main group elements, the group number is also the number of valence electrons of the element.
(b)
Interpretation:
The charge of the ion formed by the given element should be determined.
Concept Introduction:
An atom of a main group element loses or gains electrons to obtain the electronic configuration of the noble gas closest to it in the periodic table to form ions.
Cations are formed by losing electrons, thus they have fewer electrons than protons and are positively charged.
Anions are formed by gaining electrons, thus they have more electrons than protons and are negatively charged.
For example, Sodium (Na) atom has 11 electrons (
(c)
Interpretation:
The formula of an ionic compound formed from Q and fluorine should be determined.
Concept Introduction:
Ionic compounds are composed of cations and anions, which are tightly attracted to each other.
The sum of the charges in an ionic compound must always be zero.
The formula for an ionic compound shows the ratio of ions that combine to give zero charge.
When cations and anions have different charges, the number of cations and anions differ so that the overall charge of the ionic compound be zero.
As an example, see the formulae of NaCl and MgCl2.
(d)
Interpretation:
The formula of an ionic compound formed from Q and oxygen should be determined.
Concept Introduction:
Ionic compounds are composed of cations and anions, which are tightly attracted to each other.
The sum of the charges in an ionic compound must always be zero.
The formula for an ionic compound shows the ratio of ions that combine to give zero charge.
When cations and anions have different charges, the number of cations and anions differ so that the overall charge of the ionic compound be zero.
As an example, see the formulae of NaCl and MgCl2.

Want to see the full answer?
Check out a sample textbook solution
Chapter 3 Solutions
CONNECT IA GENERAL ORGANIC&BIO CHEMISTRY
- Using line angle formulas, draw thestructures of and name four alkanes that have total of 7carbons, one of which is tertiary.Please explain this in detail and can you also explain how to approach a similar problem like this as well?arrow_forwardUsing dashed line wedge projections drawthe indicated compounds and indicate whether thecompound you have drawn is R or S.(a) The two enantiomers of 2-chlorobutane. Can you please explain your steps and how you would approach a similar problem. Thank you!arrow_forward5) There are no lone pairs shown in the structure below. Please add in all lone pairs and then give the hybridization scheme for the compound. (8) 10,11 7) 1.2.3 H 4 | 14 8) COC 12 13 H 16 15 H7 9) - 5.6 C 8 H 10) H 1). 2) 3)_ 11) 12) 13) 4)_ 14) 5) 15) 16) 6)arrow_forward
- The sum of the numbers in the name of isA. 11; B. 13; C. 10; D. 12; E. none of the other answers iscorrect. I believe the awnser should be E to this problem but the solution to this problem is D 12. I'm honestly unsure how that's the solution. If you can please explain the steps to this type of problem and how to approach a problem like this it would be greatly appreciated!arrow_forwardConsider the following data for phosphorus: g atomic mass 30.974 mol electronegativity 2.19 kJ electron affinity 72. mol kJ ionization energy 1011.8 mol kJ heat of fusion 0.64 mol You may find additional useful data in the ALEKS Data tab. Does the following reaction absorb or release energy? 2+ + (1) P (g) + e → P (g) Is it possible to calculate the amount of energy absorbed or released by reaction (1) using only the data above? If you answered yes to the previous question, enter the amount of energy absorbed or released by reaction (1): Does the following reaction absorb or release energy? 00 release absorb Can't be decided with the data given. yes no ☐ kJ/mol (²) P* (8) + + + e →>> P (g) Is it possible to calculate the amount of energy absorbed or released by reaction (2) using only the data above? If you answered yes to the previous question, enter the amount of energy absorbed or released by reaction (2): ☐ release absorb Can't be decided with the data given. yes no kJ/mol аarrow_forwardThe number of hydrogens in an alkyne that has a main chain of 14carbons to which are attached a cyclobutyl ring, a benzene ring, an–OH group, and a Br is A. 34; B. 35; C. 36; D. 24; E. 43arrow_forward
- Hello! I have a 500 Hz H-NMR for 1,5-bis-(4-methoxyphenyl)-penta-1,4-dien-3-one. I need to label the signals with the corresponding H's. Then, find out if the two alkenes are cis or trans by calculating the J values. I believe that I have the H-NMR labeled correctly, but not sure if I got the J values correct to determine if the two alkenes in the compound will make the compound cis or trans.arrow_forwardWhat is the only possible H-Sb-H bond angle in SbH3?arrow_forwardpls helparrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning




