(a)
Interpretation:
Number of electrons must be gained/lost by lithium to achieve a noble gas configuration should be determined.
Concept Introduction:
Electron configurations of noble gasses such as helium (He), neon (Ne) or argon (Ar) are stable because their electronic shells or subshells are completely filled. The electronic configuration of these noble gases are as follows:
the electronic configuration of He =
the electronic configuration of Ne =
the electronic configuration of Ar =
An atom of a main group element loses or gains electrons to obtain the electronic configuration of the noble gas closest to it in the periodic table to form ions.
There are two types of ions, cationic and anionic.
Cations are formed by losing electrons, thus they have fewer electrons than protons and are positively charged.
Anions are formed by gaining electrons, thus they have more electrons than protons and are negatively charged.
For example, sodium (Na) atom has 11 electrons (

Answer to Problem 33P
1 electron must be lost.
Explanation of Solution
The electronic configuration of Li is
The nearest noble gas to Li is helium (He), whose electronic configuration is
Therefore, Li must lose one electron to achieve He atom's electronic configuration.
Because an electron is lost, the result is Li+ cation.
(b)
Interpretation:
Number of electrons must be gained/lost by iodine to achieve a noble gas configuration should be determined.
Concept Introduction:
Electron configurations of noble gasses such as helium (He), neon (Ne) or argon (Ar) are stable because their electronic shells or subshells are completely filled. The electronic configuration of these noble gases are as follows:
the electronic configuration of He =
the electronic configuration of Ne =
the electronic configuration of Ar =
An atom of a main group element loses or gains electrons to obtain the electronic configuration of the noble gas closest to it in the periodic table to form ions.
There are two types of ions, cationic and anionic.
Cations are formed by losing electrons;thus they have fewer electrons than protons and are positively charged.
Anions are formed by gaining electrons;thus they have more electrons than protons and are negatively charged.
For example, Fluorine (F) atom has 9 electrons (

Answer to Problem 33P
1 electron must be gained
Explanation of Solution
The electronic configuration of I is
The nearest noble gas to Li is xenon (Xe), whose electronic configuration is
Therefore, I must gain one electron to achieve Xe atom's electronic configuration.
Because an electron is lost, the result is I- anion.
(c)
Interpretation:
Number of electrons must be gained/lost by sulfur to achieve a noble gas configuration should be determined.
Concept Introduction:
Electron configurations of noble gasses such as helium (He), neon (Ne) or argon (Ar) are stable because their electronic shells or subshells are completely filled. The electronic configuration of these noble gases are as follows:
the electronic configuration of He =
the electronic configuration of Ne =
the electronic configuration of Ar =
An atom of a main group element loses or gains electrons to obtain the electronic configuration of the noble gas closest to it in the periodic table to form ions.
There are two types of ions, cationic and anionic.
Cations are formed by losing electrons, thus they have fewer electrons than protons and are positively charged.
Anions are formed by gaining electrons, thus they have more electrons than protons and are negatively charged.
For example, Fluorine (F) atom has 9 electrons (

Answer to Problem 33P
2 electrons must be gained
Explanation of Solution
The electronic configuration of S is
The nearest noble gas to S is argon (Ar), whose electronic configuration is
Therefore, S must gain two electrons to achieve Ar atom's electronic configuration.
Because two electrons are lost, the result is S2-anion.
(d)
Interpretation:
Number of electrons must be gained/lost by strontium (Sr) to achieve a noble gas configuration should be determined.
Concept Introduction:
Electron configurations of noble gasses such as helium (He), neon (Ne) or argon (Ar) are stable because their electronic shells or subshells are completely filled. The electronic configuration of these noble gases are as follows:
the electronic configuration of He =
the electronic configuration of Ne =
the electronic configuration of Ar =
An atom of a main group element loses or gains electrons to obtain the electronic configuration of the noble gas closest to it in the periodic table to form ions.
There are two types of ions, cationic and anionic.
Cations are formed by losing electrons, thus they have fewer electrons than protons and are positively charged.
Anions are formed by gaining electrons, thus they have more electrons than protons and are negatively charged.
For example, Sodium (Na) atom has 11 electrons (

Answer to Problem 33P
2 electrons must be lost
Explanation of Solution
The electronic configuration of Sr is
The nearest noble gas to Sr is krypton (Kr), whose electronic configuration is
Therefore, Sr must lose two electrons to achieve Kr atom's electronic configuration.
Because two electrons are lost, the result is Sr2+cation.
Want to see more full solutions like this?
Chapter 3 Solutions
CONNECT IA GENERAL ORGANIC&BIO CHEMISTRY
- please help fill in the tablearrow_forwardAnswer F pleasearrow_forward4. Refer to the data below to answer the following questions: The octapeptide saralasin is a specific antagonist of angiotensin II. A derivative of saralasin is used therapeutically as an antihypertensive. Amino acid analysis of saralasin show the presence of the following amino acids: Ala, Arg, His, Pro, Sar, Tyr, Val, Val A.Sar is the abbreviation for sarcosine, N-methyl aminoethanoic acid. Draw the structure of sarcosine. B. N-Terminal analysis by the Edman method shows saralasin contains sarcosine at the N-terminus. Partial hydrolysis of saralasin with dilute hydrochloric acid yields the following fragments: Tyr-Val-His Sar-Arg-Val His-Pro-Ala Val-Tyr-Val Arg-Val-Tyr What is the structure of saralasin?arrow_forward
- What is the structure of the DNA backbone?arrow_forwardPLEASE PLEASE PLEASE use hand drawn structures when possarrow_forward. M 1- MATCH each of the following terms to a structure from the list below. There is only one correct structure for each term and structures may be used more than once. Place the letter of the structure in the blank to the left of the corresponding term. A. Sanger dideoxy method C. Watson-Crick B. GAUCGUAAA D. translation E. HOH2C OH OH G. transcription I. AUGGCUGAG 0 K. OPOH2C 0- OH N- H NH2 F. -OPOH2C 0- OH OH H. Maxam-Gilbert method J. replication N L. HOH2C a. b. C. d. e. f. g. B M. AGATCGCTC a pyrimidine nucleoside RNA base sequence with guanine at the 3' end. DNA base sequence with cytosine at the 3' end. a purine nucleoside DNA sequencing method for the human genome 2'-deoxyadenosine 5'-phosphate process by which mRNA directs protein synthesis OH NH2arrow_forward
- Please use hand drawn structures when neededarrow_forwardB. Classify the following amino acid. Atoms other than carbon and hydrogen are labeled. a. acidic b. basic C. neutral C. Consider the following image. Which level of protein structure is shown here? a. primary b. secondary c. tertiary d. quaternary D. Consider the following image. H RH H HR H R HR HR RH Which level of protein structure is shown in the box? a. primary b. secondary R c. tertiary d. quaternary コー Rarrow_forwardBriefly answer three from the followings: a. What are the four structures of the protein? b. Why is the side chain (R) attached to the alpha carbon in the amino acids is important for the function? c. What are the types of amino acids? And how is it depend on the (R) structure? d. Write a reaction to prepare an amino acid. prodarrow_forward
- Answe Answer A and B pleasearrow_forward3. Refer to the data below to answer the following questions: Isoelectric point Amino Acid Arginine 10.76 Glutamic Acid 3.22 Tryptophan 5.89 A. Define isoelectric point. B. The most basic amino acid is C. The most acidic amino acid is sidizo zoarrow_forward3. A gas mixture contains 50 mol% H2 and 50 mol% He. 1.00-L samples of this gas mixture are mixed with variable volumes of O2 (at 0 °C and 1 atm). A spark is introduced to allow the mixture to undergo complete combustion. The final volume is measured at 0 °C and 1 atm. Which graph best depicts the final volume as a function of the volume of added O2? (A) 2.00 1.75 Final Volume, L 1.50 1.25 1.00 0.75 0.50 0.25 0.00 0.00 0.25 0.50 2.00 (B) 1.75 1.50 Final Volume, L 1.25 1.00 0.75 0.50- 0.25 0.00 0.75 1.00 0.00 0.25 Volume O₂ added, L 2 0.50 0.75 1.00 Volume O₂ added, L 2 2.00 2.00 (C) (D) 1.75 1.75 1.50 1.50 Final Volume, L 1.25 1.00 0.75 0.50 Final Volume, L 1.25 1.00 0.75 0.50 0.25 0.25 0.00 0.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 Volume O₂ added, L 0.50 0.75 1.00 Volume O₂ added, L 2arrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning



