Elementary Principles of Chemical Processes, Binder Ready Version
Elementary Principles of Chemical Processes, Binder Ready Version
4th Edition
ISBN: 9781118431221
Author: Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher: WILEY
bartleby

Concept explainers

Question
Book Icon
Chapter 3, Problem 3.68P
Interpretation Introduction

(a)

Interpretation:

The resistance thermometer calibration formula for T (°C) in terms of r (ohm) should be derived.

Concept introduction:

The relationship between the temperature and the resistance should be written as follows:

T(0C)=a r(ohm)+b

Where, a and b are taken as the constants.

Interpretation Introduction

(b)

Interpretation:

The given gas law expression to an expression for n (kmol/min) in terms of P(mm Hg) T(°C) and V(m3/min) should be converted.

Concept introduction:

The given gas law needs to be equated to convert the expressions.

n.(kmols)=12.186P(atm)×V.(m3/s)T(K)

Here, n. is molar flow rate of gas and V. is volumetric flow rate of the gas.

Conversion factors will be used to generate the desired conversions.

Interpretation Introduction

(c)

Interpretation:

The temperatures and pressures at point 1,2 and 3 should be determined.

Concept introduction:

The derived equation from part (a) must be used to solve the temperatures as:

T(0C)=10.634 r(ohm)-251.22.

For the pressure calculation, the following formula needs to be used:

P(mmHg)=h+P(atm).

Interpretation Introduction

(d)

Interpretation:

The molar flow rate of the combined gas stream should be calculated.

Concept introduction:

The point 1 with methane gas and point 2 with air are combined as the gas stream.

The molar flow rate at the two points should be calculated with following formula obtained in part (b):

n'.=0.016034×P'mmHg×V'.(m3/min)T'0C+273

The molar flow rate at two points should be added to get the molar flow rate of the combined stream.

Interpretation Introduction

(e)

Interpretation:

The reading of flowmeter 3 in m3/min should be cakculated.

Concept introduction:

The flowmeter at point three will give the volumetric flow rate of the combined gas which can be determined using following equation obtained in part (b):

n'.=0.016034×P'mmHg×V'.(m3/min)T'0C+273.

From the equation:

V3=n3(T3+273)0.016034×P3

Interpretation Introduction

(f)

Interpretation:

The total mass flow rate and mass fraction of the methane at point 3 should be calculated.

Concept introduction:

The mass flow rate is calculated as mass flown per unit time and the mass fraction is the ratio of mass flow rate of one component to the mass flow rate of total component mixture.

Blurred answer
Students have asked these similar questions
Do question 9 please! Question 7 Is just there for reference!!
7) You are tasked with separating two proteins by ion exchange chromatography on a 30 cm long column with an inner diameter of 2 cm. The resin has a diameter of 100 μm and a void fraction of 0.3, and your mobile phase flows through the column at a rate of Q = 5 cm³/min. The Van Deemter coefficients A, B, and C have been determined to be 0.0228 cm, 0.0036 cm²/min, and 0.00053 min, respectively, for both proteins. Protein A elutes from the column with an average retention time of 27 min and standard deviation of 0.8 min. Protein B elutes from the column. with an average retention time of 33.8 min and standard deviation of 1.0. a) How many theoretical plates does the column contain? b) What flow rate (Q) will give you the maximum resolution? c) What is the minimum height of a theoretical plate for the system?
4) A fixed bed adsorption unit contains rigid (incompressible) silica particles with a diameter of 120 um and porosity of 0.3. The resin bed is 200 cm long and has a diameter of 15 cm. A protein solution is pumped into the column at a rate of 50 L/min, and the mobile phase has a viscosity of 1.2 CP. a) What is the pressure drop for this system (in bar)? b) What would be the pressure drop if the particle diameter were decreased to 30 μm?

Chapter 3 Solutions

Elementary Principles of Chemical Processes, Binder Ready Version

Knowledge Booster
Background pattern image
Chemical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The