
Interpretation:
The expressions to calculate the work and heat for the four steps of a Carnot cycle are to be stated. The
Concept introduction:
The Carnot cycle represents the relationship between the efficiency of a steam engine and the temperatures. It was given by Carnot who stated that every engine gets the heat from a high-temperature reservoir. Some of the heat is converted to the work during the process. The Carnot cycle has four major steps:
Step 1: Reversible isothermal expansion
Step 2: Reversible adiabatic expansion
Step 3: Reversible isothermal compression
Step 4: Reversible adiabatic compression

Answer to Problem 3.65E
The expressions to calculate the work and heat for the four steps of a Carnot cycle are given below.
The
The total work and heat of the cycle is
The value of
Explanation of Solution
For the Carnot cycle, the first and the third step are reversible isothermal processes.
On the other hand, the second and the fourth step are reversible adiabatic processes. So, the expressions to calculate the heat for four steps can be written as shown below.
The variables
From the first law of
The work done for reversible adiabatic processes is given by the formula given below.
Therefore, the expressions to calculate the work for second and the fourth steps can be written as shown below.
Assume
Total heat can be calculated as shown below.
Substitute the values in the above equation as shown below.
Work done for the first and third step can be calculated as shown below.
Substitute the values in the above equation as shown below.
Work done for the second and fourth step can be calculated as shown below.
Substitute the values in the above equation as shown below.
The work of the cycle is calculated by using the formula given below.
Substitute the values in the above equation as shown below.
The entropy change is calculated by the formula given below.
The steps first and the third are reversible isothermal processes; so, the temperature is constant, and at a constant temperature, the heat change is constant. The values of changes in the energy, that is,
The expressions to calculate the work and heat for the four steps of a Carnot cycle are given below.
The
The total work and heat of the cycle is
The value of
Want to see more full solutions like this?
Chapter 3 Solutions
PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
- Please sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forward4. Read paragraph 4.15 from your textbook, use your calculated lattice energy values for CuO, CuCO3 and Cu(OH)2 an explain thermal decomposition reaction of malachite: Cu2CO3(OH)2 →2CuO + H2O + CO2 (3 points)arrow_forwardPlease sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forward
- III O Organic Chemistry Using wedges and dashes in skeletal structures Draw a skeletal ("line") structure for each of the molecules below. Be sure your structures show the important difference between the molecules. key O O O O O CHON Cl jiii iiiiiiii You can drag the slider to rotate the molecules. Explanation Check Click and drag to start drawing a structure. Q Search X G ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use F 3 W C 3/5arrow_forward3. Use Kapustinskii's equation and data from Table 4.10 in your textbook to calculate lattice energies of Cu(OH)2 and CuCO3 (4 points)arrow_forward2. Copper (II) oxide crystalizes in monoclinic unit cell (included below; blue spheres 2+ represent Cu²+, red - O²-). Use Kapustinski's equation (4.5) to calculate lattice energy for CuO. You will need some data from Resource section of your textbook (p.901). (4 points) CuOarrow_forward
- What is the IUPAC name of the following compound? OH (2S, 4R)-4-chloropentan-2-ol O (2R, 4R)-4-chloropentan-2-ol O (2R, 4S)-4-chloropentan-2-ol O(2S, 4S)-4-chloropentan-2-olarrow_forwardIn the answer box, type the number of maximum stereoisomers possible for the following compound. A H H COH OH = H C Br H.C OH CHarrow_forwardSelect the major product of the following reaction. Br Br₂, light D Br Br Br Brarrow_forward
- Select all molecules which are chiral. Brarrow_forwardUse the reaction coordinate diagram to answer the below questions. Type your answers into the answer box for each question. (Watch your spelling) Energy A B C D Reaction coordinate E A) Is the reaction step going from D to F endothermic or exothermic? A F G B) Does point D represent a reactant, product, intermediate or transition state? A/ C) Which step (step 1 or step 2) is the rate determining step? Aarrow_forward1. Using radii from Resource section 1 (p.901) and Born-Lande equation, calculate the lattice energy for PbS, which crystallizes in the NaCl structure. Then, use the Born-Haber cycle to obtain the value of lattice energy for PbS. You will need the following data following data: AH Pb(g) = 196 kJ/mol; AHƒ PbS = −98 kJ/mol; electron affinities for S(g)→S¯(g) is -201 kJ/mol; S¯(g) (g) is 640kJ/mol. Ionization energies for Pb are listed in Resource section 2, p.903. Remember that enthalpies of formation are calculated beginning with the elements in their standard states (S8 for sulfur). The formation of S2, AHF: S2 (g) = 535 kJ/mol. Compare the two values, and explain the difference. (8 points)arrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning





