Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN: 9781259696527
Author: J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 3.5P
For the system described in Prob. 3.4:
(a) How many phase-rule variables in addition to T and P must be chosen so as to fix the compositions of both phases?
(h) If the temperature and pressure are to remain the same, can the overall composition of the system be changed (by adding or removing material) without affecting the compositions of the liquid and vapor phases?
3.4. A system comprised of chloroform, 1.4-dioxane, and ethanol exists as a two-phase vapor/liquid system at 50°C and 55 kPa. After the addition of some pure ethanol, the system can be returned to two-phase equilibrium at the initial T and P. In what respect has the system changed, and in what respect has it not changed?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A process for the microbial synthesis of 1,3-propanediol ( 3 8 2 C H O ) uses an anaerobicfermenter with a selected strain of K. pneumoniae to convert glycerol ( 3 8 3 C H O ) to 1,3-propanediol and acetic acid ( 2 4 2 C H O ). All other byproducts are of negligible concentration.The fermentation and cell growth equation can be written:3 8 3 3 4 7 2 3 8 2 2 4 2 2 2 68 3 3 49 15 15 40 C H O NH C H O N C H O C H O CO H O + → + + + +The continuous fermentation process is set up at 37°C and atmospheric pressure.Anaerobic conditions are maintained by sparging the fermentation broth with N2 at aflowrate of 500 litres per minute. The medium, containing ammonia, is fed at 500 kg perhour, and has a composition of 14% (w/w) glycerol. Suppression of the side reactions isachieved by excess glycerol, so the liquid product contains 3% (w/w) unreacted glycerol.2a. Draw a process diagram. List all your assumptions necessary to write a materialbalance.(5 marks)2b. List your unknowns.(3 marks)2c. Write…
8-4. A pressurized-water reactor generates 70 Mw(t) in the core. The coolant-moderator
mass-flow rate is 107 lbm/hr. It enters the core at 490°F. Estimate the effective thermal-
neutron fission cross section in the core.
Q/ 8-17 cylindrical reactor core is 4 ft in diameter and 4.8 ft height. The maximum neutron flux
is 1013. The extrapolation length are 0.186 ft in the radial direction and 0.3 ft in the axial
direction. The fuel is 20% enriched UO2.0= 500 b. Determine (a) The neutron flux at the upper
and lower rims, and (b) the maximum heat generated in the fuel in [MeV/s cm³] and [Btu/hr ft³).
Chapter 3 Solutions
Introduction to Chemical Engineering Thermodynamics
Ch. 3 - Prob. 3.1PCh. 3 - Prob. 3.2PCh. 3 - A closed, nonreactive system contains species 1...Ch. 3 - Prob. 3.4PCh. 3 - For the system described in Prob. 3.4: (a) How...Ch. 3 - Prob. 3.6PCh. 3 - Prob. 3.7PCh. 3 - Prob. 3.8PCh. 3 - Prob. 3.9PCh. 3 - Prob. 3.10P
Ch. 3 - Prob. 3.11PCh. 3 - Prob. 3.12PCh. 3 - Prob. 3.13PCh. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Prob. 3.16PCh. 3 - Prob. 3.17PCh. 3 - Prob. 3.18PCh. 3 - Prob. 3.19PCh. 3 - Prob. 3.20PCh. 3 - Prob. 3.21PCh. 3 - Prob. 3.22PCh. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - Prob. 3.26PCh. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - Prob. 3.30PCh. 3 - Prob. 3.31PCh. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - Prob. 3.35PCh. 3 - Prob. 3.36PCh. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - Prob. 3.39PCh. 3 - Prob. 3.40PCh. 3 - Prob. 3.41PCh. 3 - Prob. 3.42PCh. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - Prob. 3.47PCh. 3 - Prob. 3.48PCh. 3 - Prob. 3.49PCh. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - Prob. 3.53PCh. 3 - Prob. 3.54PCh. 3 - Prob. 3.55PCh. 3 - Prob. 3.56PCh. 3 - Prob. 3.57PCh. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Prob. 3.63PCh. 3 - Prob. 3.64PCh. 3 - Prob. 3.65PCh. 3 - Prob. 3.66PCh. 3 - Prob. 3.67PCh. 3 - Prob. 3.68PCh. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - Prob. 3.72PCh. 3 - Prob. 3.73PCh. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - Prob. 3.79PCh. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - Prob. 3.82PCh. 3 - Prob. 3.83PCh. 3 - Prob. 3.84PCh. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - Prob. 3.93PCh. 3 - Prob. 3.94PCh. 3 - Prob. 3.95P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.Similar questions
- LATIHAN 8.5-4. Concentration of NaOH Solution in Triple-Effect Evaporator. A forced-circulation triple-effect evaporator using forward feed is to be used to concentrate a 10 wt % NaOH solution entering at 37.8°C to 50%. The steam used enters at 58.6 kPa gage. The absolute pressure in the vapor space of the third effect is 6.76 kPa. The feed rate is 13 608 kg/h. The heat-transfer coefficients are U₁ = 6246, U2 = 3407, and U3 = 2271 W/m² K. All effects have the same area. Calculate the surface area and steam consumption. 8.5-1. Boiling Points in a Triple-Effect Evaporator. A solution with a negligible boiling- point rise is being evaporated in a triple-effect evaporator using saturated steam at 121.1°C (394.3 K). The pressure in the vapor of the last effect is 25.6 kPa abs. The heat-transfer coefficients are U₁ = 2840, U₂ = 1988, and U₁ = 1420 W/m² K and the areas are equal. Estimate the boiling point in each of the evaporators.arrow_forwardThe power generation unit in a plant uses a hot exhaust gas from another process to produce work. The gas enters at 10 bar and 350°C and exits at 1 bar and 40°C. The process produces a net amount of work equal to 4500 J/mol and it exchanges an unknown amount of heat with the surroundings. 1.1 Determine the amount of heat exchanged with the surroundings. Is this heat absorbed or rejected by the system? 1.2 Calculate the entropy change of the exhaust gas. 1.3 As a young and ambitious chemical engineer, you seek ways to improve the process. What is the maximum amount of work that you could extract from this system? Assume that the inlet and outlet conditions of the exhaust gas remain the same. Additional data: Assume the surroundings to be at the constant temperature of 298 K and the exhaust gas to be ideal with CP = 29.3 J/mol.Karrow_forwardLatihan mandiri Reaktor fluidisasi menggunakan katalis padat dengan diameter partikel 0,25 mm, rapat massa 1,50 g/ml, sperisitas 0,90. Pada kondisi unggun diam, porositas 0,35, tinggi unggun 2 m. Gas masuk dari bagian bawah reaktor pada suhu 600°C pada viskositas 0,025 CP serta rapat massa 0,22 lb/cuft. Pada fluidisasi minimum, porositas tercapai pada 0,45. Hitung Hitung a. Laju alir semu minimum (VM) gas masuk kolom fluidisasi ! b. Tinggi unggun jika Vo = 2 VM c. Pressure drop pada kondisi Vo = 2,5 VM < 1 m = 3,28084 ft 1 g/ml = 62,43 lbm/ft³ 1 cp gc = 6,7197 × 10-4 lbm/ft.s = 32,174 ft/s² =arrow_forward
- determine the binary diffusion coefficient of CO2 in air at a) 200 K and 1 atm b)400K and 0.5atm c)600 K and 5 atmarrow_forwardUsing Rachford-Rice in Excel, analyze flash distillation of the following feed stream at P = 1000 kPa and T = 30°C. Feed (1000 kmol/hr) is composed of ethane (25%), propane (30%), propylene (5%) and n-hexane (40%):a. What is the composition and flowrate of the vapor stream? [V should be 196 kmol/hr when solved]b. What is the composition and flowrate of the liquid stream?c. What fraction of the n-hexane (feed) ends up in the vapor phase?d. What fraction of the ethane (feed) ends up in the liquid phase?arrow_forwardA 40 mol % ethanol 60 mol % water mixture at 60 °C and 1 atm is heated. Using Figure 2-3 answer the following:a. At what temperature does the mixture first begin to boil? What is the composition of the first bubble of vapor?b. At what temperature would it stop boiling (assume no material is removed)? What is the composition of the last droplet of liquid?c. At 82 °C, what fraction is liquid? [should be 0.6]d. When 90% has been vaporized, what is the temperature, and what are the liquid and vapor compositions?arrow_forward
- Using Rachford-Rice in Excel, analyze flash distillation of the following feed stream at P = 1000 kPa and T = 30°C. Feed (1000 kmol/hr) is composed of ethane (25%), propane (30%), propylene (5%) and n-hexane (40%):a. What is the composition and flowrate of the vapor stream? [196 kmol/hr]b. What is the composition and flowrate of the liquid stream?c. What fraction of the n-hexane (feed) ends up in the vapor phase?d. What fraction of the ethane (feed) ends up in the liquid phase?arrow_forwardConsidering the molar flux as estimated by the Whitman two-film theory, show the relationship between the mass transfer coefficients based on concentration, and mol fraction gradients, kc and ky, respectively, is given by: ky = Ckc, where C is the total concentration. do not use chatgpt please, i did not understan from it thats why i paid for bartlebyarrow_forwardConsidering the molar flux as estimated by the Whitman two-film theory, show the relationship between the mass transfer coefficients based on concentration, and mol fraction gradients, kc and ky, respectively, is given by: ky = Ckc, where C is the total concentration. please do not use chatgpt, i did not understand from it that is why i paid for this.arrow_forward
- We have a feed that is a binary mixture of methanol and water (55.0 mol% methanol) that is sent to a system of two flash drums hooked together. The vapor from the first drum is cooled, which partially condenses the vapor, and then is fed to the second flash drum. Both drums operate at a pressure of 1.0 atm and are adiabatic. The feed rate to the first drum is 1000.0 kmol/h. We desire a liquid product from the first drum that is 30.0 mol% methanol (x1 = 0.300). The second drum operates at a fraction vaporized of (V/F)2 = 0.250. The equilibrium data are in Table 2-8. Find the following for the first drum: y1, T1, (V/F)1, and vapor flow rate V1. Find the following for the second drum: y2, x2, T2, and vapor flow rate V2.arrow_forwardShow that the overall mass transfer coefficient, Ky, can be related to the individual gas and liquid film mass transfer coefficients, ky and kx, respectively, by the following equation: 1 K y = 1 + m kk y xarrow_forwardUse the approach given to solvearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The
Homogeneous and Heterogeneous Equilibrium - Chemical Equilibrium - Chemistry Class 11; Author: Ekeeda;https://www.youtube.com/watch?v=8V9ozZSKl9E;License: Standard YouTube License, CC-BY