Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN: 9781259696527
Author: J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 3.63P
Interpretation Introduction
Interpretation:
To find the mass of phosphine
Concept Introduction:
The molar volume of phosphine in cylinder is given as
The mass of phosphene in cylinder is:
Where
The
The molar volume of phosphine in cylinder is also calculated from generalized correlations for gases given by Pitzer at given conditions. The expression is:
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
At a Pressure of 200 mm Hg, match the substance with the boiling temperature.
69.50°C
1. Benzene
1.92°C
2. Toluene
41.94°C
3. n-Pentane
4. n-Hexane
31.61°C
At a Pressure of 400 mm Hg, match the substance with the boiling temperature.
62.89°C
1. Styrene
122.69°C
2. Ethanol
3. Toluene
89.48°C
4. Benzene
60.61°C
8. A gas is admitted at a rate of 0.015 m³s-¹ to a vertical glass pipe with
an inside diameter of 50 mm. The gas bubbles that form travel with a
velocity of 32 ms-¹. Determine the gas void fraction and the velocity
of the liquid if the volumetric flow is 2.5 x 10-5 m³s-1. Answer: 0.24,
1.7 ms-1
9 Characterise the main concepts of a homogeneous flow model sepa-
Chapter 3 Solutions
Introduction to Chemical Engineering Thermodynamics
Ch. 3 - Prob. 3.1PCh. 3 - Prob. 3.2PCh. 3 - A closed, nonreactive system contains species 1...Ch. 3 - Prob. 3.4PCh. 3 - For the system described in Prob. 3.4: (a) How...Ch. 3 - Prob. 3.6PCh. 3 - Prob. 3.7PCh. 3 - Prob. 3.8PCh. 3 - Prob. 3.9PCh. 3 - Prob. 3.10P
Ch. 3 - Prob. 3.11PCh. 3 - Prob. 3.12PCh. 3 - Prob. 3.13PCh. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Prob. 3.16PCh. 3 - Prob. 3.17PCh. 3 - Prob. 3.18PCh. 3 - Prob. 3.19PCh. 3 - Prob. 3.20PCh. 3 - Prob. 3.21PCh. 3 - Prob. 3.22PCh. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - Prob. 3.26PCh. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - Prob. 3.30PCh. 3 - Prob. 3.31PCh. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - Prob. 3.35PCh. 3 - Prob. 3.36PCh. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - Prob. 3.39PCh. 3 - Prob. 3.40PCh. 3 - Prob. 3.41PCh. 3 - Prob. 3.42PCh. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - Prob. 3.47PCh. 3 - Prob. 3.48PCh. 3 - Prob. 3.49PCh. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - Prob. 3.53PCh. 3 - Prob. 3.54PCh. 3 - Prob. 3.55PCh. 3 - Prob. 3.56PCh. 3 - Prob. 3.57PCh. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Prob. 3.63PCh. 3 - Prob. 3.64PCh. 3 - Prob. 3.65PCh. 3 - Prob. 3.66PCh. 3 - Prob. 3.67PCh. 3 - Prob. 3.68PCh. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - Prob. 3.72PCh. 3 - Prob. 3.73PCh. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - Prob. 3.79PCh. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - Prob. 3.82PCh. 3 - Prob. 3.83PCh. 3 - Prob. 3.84PCh. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - Prob. 3.93PCh. 3 - Prob. 3.94PCh. 3 - Prob. 3.95P
Knowledge Booster
Similar questions
- 3. A mixture of air and water at a temperature of 25°C flows up through a vertical tube with a length of 4 m and an internal diameter of 25.4 mm with the exit of the tube being at atmospheric pressure. The mass flows of the air and the water are 0.007 kgs-1 and 0.3 kgs-1, respectively. For air, the density is 1.2 kgm³ and viscosity is 1.85 x 10-5 Nsm-2, and for water, the density is 1000 kgm-3 and viscosity is 8.9 × 10-4 Nsm-2. Answer: 2.7 kNm-2m-1arrow_forward15. Show that for a one-dimensional annular flow in a horizontal pipe with no acceleration, the pressure gradient on the gas core is dp= 4ti dz d√√α where t, is the interfacial shear stress and a is the gas void fraction.arrow_forwarda gas. Problems in Two phase flow docx horizontal pipe carrying a liquid and that can exist in 6. Explain what is meant by gas hold-up and describe ways in which it can be measured. Ets required to transporta ydrocarbon as a two-phase mixture ofarrow_forward
- 7. It is required to transport a hydrocarbon as a two-phase mixture of liquid and vapour along a smooth-walled pipe with an inside diam- eter of 100 mm. The total hydrocarbon flow rate is 2.4 kgs-1 with a vapour mass fraction of 0.085. The pipe is to operate at an absolute pressure of 2.2 bar. The liquid density is 720 kgm³, and viscosity is 4.8 × 10-4 Nsm², while for the vapour, the density is 1.63 kgm³, and the viscosity is 2.7 x 10-5 Nsm-2. Determine the maximum per- missible length of pipe if the pressure drop along the pipe is not to exceed 20 kNm-2. Answer: 44 marrow_forward13. Show that the gas void fraction for a flowing gas-liquid mixture can be expressed in terms of the phase velocity, quality, and densities of the mixture as 1 α = PU (1-x) 1+18 Բ. Ա. xarrow_forwardvelocis the air and water. Answer: 0.02605 kgs-1, 61.1 kgm 3, 0.94, 0.822 ms-1, 0.051 ms-1 5. Describe, with the use of sketches, the various two-phase flow regimes that can exist in a horizontal pipe carrying a liquid and a gas. 6. Explate what is mean by gas hold up and describe way which itarrow_forward
- 2. Describe, with the use of sketches, the various flow regimes that can exist in a vertical pipe carrying two-phase flow (liquid and gas). •arrow_forward12. A mixture of oil and gas flows through a horizontal pipe with an inside diameter of 150 mm. The respective volumetric flow rates for the oil and gas are 0.015 and 0.29 m³s-¹. Determine the gas void frac- tion and the average velocities of the oil and gas. The friction factor may be assumed to be 0.0045. The gas has a density of 2.4 kgm³ and viscosity of 1 x 10-5 Nsm-2. The oil has a density of 810 kgm-3 and density of 0.82 Nsm-2. Answer: 0.79, 20.8 ms-1, 4 ms-1arrow_forward14. A bubbly mixture of gas and liquid flows up a vertical glass tube with an internal diameter of 25 mm. The liquid flow is controlled to be 0.02 litres per second, and the gas flow is 10 litres per second. The bubble velocity is determined photographically to have a velocity of 30 ms-¹. Determine the gas void fraction for the two-phase mixture and the liquid velocity. Answer: 0.68, 0.13 ms-¹ CLarrow_forward
- 8.9 × 10-4 Nsm-2. Answer: 2.7 kNm²²m-1 4. An experimental test rig is used to examine two-phase flow regimes in horizontal pipelines. A particular experiment involved uses air and water at a temperature of 25°C, which flow through a horizontal glass tube with an internal diameter of 25.4 mm and a length of 40 m. Water is admitted at a controlled rate of 0.026 kgs-¹ at one end and air at a rate of 5 x 104 kgs¹ in the same direction. The density of water is 1000 kgm³, and the density of air is 1.2 kgm³. Determine the mass flow rate, the mean density, gas void fraction, and the superficial velocities of the air and water. Answer: 0.02605 kgs-1, 61.1 kgm-3, 0.94, 0.822 ms-1, 0.051 ms-1arrow_forwardA 1 μm radius water droplet is settling in paraffin oil. The oil contains an oil-soluble surfactant. The surface dilatational viscosity is 1×104 kg/s. Calculate the settling velocity using the Stokes, Hadamard-Rybczynski and the Boussinesq equations. Compare your results. The density of the oil is 770 kg/m³ and its viscosity is 0.8×10-³ Pa s. Sel Given: The semino velochy v. t the drop is calcula out in a song Rd=1×10-6 m, nath d=1×104 kg/s, Pooib Md=1×10-³ Pa s. S. μ=0.8×10-3 Pas Garing bigit p=770 kg/m³, logo Pd=1000 kg/m³arrow_forward1. Determine the range of mean density of a mixture of air in a 50:50 oil-water liquid phase across a range of gas void fractions. The den- sity of oil is 900 kgm³, water is 1000 kgm³, and gas is 10 kgm³.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The