Concept explainers
For each of the general electron-dot formulas for elements, give the following information : [1] the number of valence electrons; [2] the group number of the element; [3] how many electrons would be gained or lost to achieve a noble gas configuration; [4] the charge on the resulting ion; [5] an example of the element.
a. X.
(a)
Interpretation:
Number of electrons must be gained/lost by cesium to achieve a noble gas configuration should be determined.
Concept Introduction:
Electron configurations of noble gasses such as neon (Ne) or argon (Ar) are stable because their electronic shells (or subshells) are completely filled.
Here,
The electronic configuration of Ne =
The electronic configuration of Ar =
An atom of a main group element loses or gains electrons to obtain the electronic configuration of the noble gas closest to it in the periodic table to form ions.
Cations are formed by losing electrons. They are positively charged.
Anions are formed by gaining electrons. They are negatively charged.
For example, sodium (Na) atom has 11 electrons (
Answer to Problem 35P
1 electron must be lost.
Explanation of Solution
Cesium (Cs) has 55 electrons. The electronic configuration of Cs is
The nearest noble gas to Cs is Xenon (Xe), whose electronic configuration is
Therefore, Cs must lose one electron to achieve Xe atom's electronic configuration.
Because an electron is lost, the result is Cs+ cation.
(b)
Interpretation:
Number of electrons must be gained/lost by barium to achieve a noble gas configuration should be determined.
Concept Introduction:
Electron configurations of noble gasses such as neon (Ne) or argon (Ar) are stable because their electronic shells (or subshells) are completely filled.
Here,
The electronic configuration of Ne =
The electronic configuration of Ar =
An atom of a main group element loses or gains electrons to obtain the electronic configuration of the noble gas closest to it in the periodic table to form ions.
Cations are formed by losing electrons. They are positively charged.
Anions are formed by gaining electrons. They are negatively charged.
For example, Sodium (Na) atom has 11 electrons (
Answer to Problem 35P
2 electrons must be lost.
Explanation of Solution
Barium (Ba) has 56 electrons. The electronic configuration of Cs is
The nearest noble gas to Cs is Xenon (Xe), whose electronic configuration is
Therefore, Ba must lose two electrons to achieve Xe atom's electronic configuration.
Because two electrons are lost, the result is Ba2+ cation.
(c)
Interpretation:
Number of electrons must be gained/lost by selenium to achieve a noble gas configuration should be determined.
Concept Introduction:
Electron configurations of noble gasses such as helium (He), neon (Ne) or argon (Ar) are stable because their electronic shells or subshells are completely filled.
Here,
The electronic configuration of He =
The electronic configuration of Ne =
The electronic configuration of Ar =
An atom of a main group element loses or gains electrons to obtain the electronic configuration of the noble gas closest to it in the periodic table to form ions.
There are two types of ions, cationic and anionic.
Cations are formed by losing electrons, thus they have fewer electrons than protons and are positively charged.
Anions are formed by gaining electrons, thus they have more electrons than protons and are negatively charged.
For example, fluorine (F) atom has 9 electrons (
Answer to Problem 35P
2 electrons must be gained.
Explanation of Solution
The electronic configuration of selenium (Se) is
The nearest noble gas to Sr is krypton (Kr), whose electronic configuration is
Therefore, Se must gain two electrons to achieve Kr atom's electronic configuration.
Because two electrons are gained, the result is Se2- anion.
(d)
Interpretation:
Number of electrons must be gained/lost by aluminum (Al) to achieve a noble gas configuration should be determined.
Concept Introduction:
Electron configurations of noble gasses such as helium (He), neon (Ne) or argon (Ar) are stable because their electronic shells or subshells are completely filled.
Here,
The electronic configuration of He =
The electronic configuration of Ne =
The electronic configuration of Ar =
An atom of a main group element loses or gains electrons to obtain the electronic configuration of the noble gas closest to it in the periodic table to form ions.
There are two types of ions, cationic and anionic.
Cations are formed by losing electrons, thus they have fewer electrons than protons and are positively charged.
Anions are formed by gaining electrons, thus they have more electrons than protons and are negatively charged.
For example, sodium (Na) atom has 11 electrons (
Answer to Problem 35P
3 electrons must be lost.
Explanation of Solution
Aluminum (Al) has 13 electrons. The electronic configuration of Al is
The nearest noble gas to Al is neon (Ne), whose electronic configuration is
Therefore, Al must lose three electrons to achieve Ne atom's electronic configuration.
Because three electrons are lost, the result is Al3+ cation.
Want to see more full solutions like this?
Chapter 3 Solutions
Loose Leaf for General, Organic and Biological Chemistry with Connect 2 Year Access Card
Additional Science Textbook Solutions
Genetics: From Genes to Genomes
Brock Biology of Microorganisms (15th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Fundamentals Of Thermodynamics
Microbiology Fundamentals: A Clinical Approach
- 13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)! Googlearrow_forwardPrint Last Name, First Name Initial Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 4th total • 6H total 래 • 4H total 21 total ZH 2H Statistical H < 3° C-H weakest - product abstraction here bund leads to thermo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Product 6 Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Cl Waterfoxarrow_forward10. (5pts) Provide the complete arrow pushing mechanism for the chemical transformation → depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O II HA H CH3O-H H ①arrow_forward
- Do the Lone Pairs get added bc its valence e's are a total of 6 for oxygen and that completes it or due to other reasons. How do we know the particular indication of such.arrow_forwardNGLISH b) Identify the bonds present in the molecule drawn (s) above. (break) State the function of the following equipments found in laboratory. Omka) a) Gas mask b) Fire extinguisher c) Safety glasses 4. 60cm³ of oxygen gas diffused through a porous hole in 50 seconds. How long w 80cm³ of sulphur(IV) oxide to diffuse through the same hole under the same conditions (S-32.0.0-16.0) (3 m 5. In an experiment, a piece of magnesium ribbon was cleaned with steel w clean magnesium ribbon was placed in a crucible and completely burnt in oxy cooling the product weighed 4.0g a) Explain why it is necessary to clean magnesium ribbon. Masterclass Holiday assignmen PB 2arrow_forwardHi!! Please provide a solution that is handwritten. Ensure all figures, reaction mechanisms (with arrows and lone pairs please!!), and structures are clearly drawn to illustrate the synthesis of the product as per the standards of a third year organic chemistry course. ****the solution must include all steps, mechanisms, and intermediate structures as required. Please hand-draw the mechanisms and structures to support your explanation. Don’t give me AI-generated diagrams or text-based explanations, no wordy explanations on how to draw the structures I need help with the exact mechanism hand drawn by you!!! I am reposting this—ensure all parts of the question are straightforward and clear or please let another expert handle it thanks!!arrow_forward
- In three dimensions, explain the concept of the velocity distribution function of particles within the kinetic theory of gases.arrow_forwardIn the kinetic theory of gases, explain the concept of the velocity distribution function of particles in space.arrow_forwardIn the kinetic theory of gases, explain the concept of the velocity distribution function of particles.arrow_forward
- Hi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION with its parts spread out till part (g), please answer EACH part till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all calculations step by step EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forwardHi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION, please answer EACH part PART A AND PART B!!!!! till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all details EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forwardHi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION, please answer EACH part till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all details EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning