
(a)
Interpretation:
The cation derived from Lithium & the Nitrite anion should be combined in order to get an electrically neutralized ionic compound.
Concept introduction:
An ionic compound forms by the mutual attraction of 2 oppositely charged ions called cation & anion. Cation is derived from Lithium (Li). Anion is Nitrite (NO2-), which is a polyatomic anion. It is a combination of Nitrogen & Oxygen, working as a single unit.
(b)
Interpretation:
The cation derived from Calcium & the Acetate anion should be combined in order to get an electrically neutralized ionic compound.
Concept introduction:
An ionic compound forms by the mutual attraction of 2 oppositely charged ions called cation & anion. Cation is derived from Calcium (Ca). Anion is Acetate (CH3COO-), which is a polyatomic anion. It is a combination of Carbon, Hydrogen& Oxygen, working as a single unit.
(c)
Interpretation:
The cation derived from Sodium& the Bisulfite anion should be combined in order to get an electrically neutralized ionic compound.
Concept introduction:
An ionic compound forms by the mutual attraction of 2 oppositely charged ions called cation & anion. Cation is derived from Sodium (Na). Anion is Bisulfite (HSO3-), which is a polyatomic anion. It is a combination of Hydrogen, Sulfur& Oxygen, working as a single unit.
(d)
Interpretation:
The cation derived from Manganese& the Phosphate anion should be combined in order to get an electrically neutralized ionic compound.
Concept introduction:
An ionic compound forms by the mutual attraction of 2 oppositely charged ions called cation & anion. Cation is derived from Manganese (Mn). Anion is Phosphate (PO43-), which is a polyatomic anion. It is a combination of Phosphorous& Oxygen, working as a single unit.
(e)
Interpretation:
The cation derived from Magnesium& the Hydrogen sulfite anion should be combined in order to get an electrically neutralized ionic compound.
Concept introduction:
An ionic compound forms by the mutual attraction of 2 oppositely charged ions called cation & anion. Cation is derived from Magnesium (Mg). Anion is Hydrogen sulfite (HSO3-), which is a polyatomic anion. It is a combination of Hydrogen, Sulfur& Oxygen, working as a single unit.

Want to see the full answer?
Check out a sample textbook solution
Chapter 3 Solutions
Loose Leaf for General, Organic and Biological Chemistry with Connect 2 Year Access Card
- Steps and explanations pleasearrow_forwardUse diagram to answer the following: 1.Is the overall rxn endo- or exothermic. Explain briefly your answer____________________2. How many steps in this mechanism?_____________3. Which is the rate determining step? Explain briefly your answer____________________4. Identify (circle and label) the reactants,the products and intermediate (Is a Cation, Anion, or a Radical?) Please explain and provide full understanding.arrow_forwardDraw the entire mechanism and add Curved Arrows to show clearly how electrons areredistributed in the process. Please explain and provide steps clearly.arrow_forward
- Match the denticity to the ligand. Water monodentate ✓ C₂O2 bidentate H₂NCH₂NHCH2NH2 bidentate x EDTA hexadentate Question 12 Partially correct Mark 2 out of 2 Flag question Provide the required information for the coordination compound shown below: Na NC-Ag-CN] Number of ligands: 20 Coordination number: 2✔ Geometry: linear Oxidation state of transition metal ion: +3 x in 12 correct out of 2 question Provide the required information for the coordination compound shown below. Na NC-Ag-CN] Number of ligands: 20 Coordination number: 2 Geometry: linear 0 Oxidation state of transition metal ion: +3Xarrow_forwardCan you explain step by step behind what the synthetic strategy would be?arrow_forwardPlease explain step by step in detail the reasoning behind this problem/approach/and answer. thank you!arrow_forward
- 2. Predict the product(s) that forms and explain why it forms. Assume that any necessary catalytic acid is present. .OH HO H₂N OHarrow_forwardconsider the rate of the reaction below to be r. Whats the rate after each reaction? Br + NaCN CN + NaBr a. Double the concentration of alkyl bromide b. Halve the concentration of the electrophile & triple concentration of cyanide c. Halve the concentration of alkyl chloridearrow_forwardPredict the organic reactant that is involved in the reaction below, and draw the skeletal ("line") structures of the missing organic reactant. Please include all steps & drawings & explanations.arrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning



