
(a)
Interpretation:
Number of electrons must be gained/lost by lithium to achieve a noble gas configuration should be determined.
Concept Introduction:
Electron configurations of noble gasses such as helium (He), neon (Ne) or argon (Ar) are stable because their electronic shells or subshells are completely filled. The electronic configuration of these noble gases are as follows:
the electronic configuration of He =
the electronic configuration of Ne =
the electronic configuration of Ar =
An atom of a main group element loses or gains electrons to obtain the electronic configuration of the noble gas closest to it in the periodic table to form ions.
There are two types of ions, cationic and anionic.
Cations are formed by losing electrons, thus they have fewer electrons than protons and are positively charged.
Anions are formed by gaining electrons, thus they have more electrons than protons and are negatively charged.
For example, sodium (Na) atom has 11 electrons (

Answer to Problem 33P
1 electron must be lost.
Explanation of Solution
The electronic configuration of Li is
The nearest noble gas to Li is helium (He), whose electronic configuration is
Therefore, Li must lose one electron to achieve He atom's electronic configuration.
Because an electron is lost, the result is Li+ cation.
(b)
Interpretation:
Number of electrons must be gained/lost by iodine to achieve a noble gas configuration should be determined.
Concept Introduction:
Electron configurations of noble gasses such as helium (He), neon (Ne) or argon (Ar) are stable because their electronic shells or subshells are completely filled. The electronic configuration of these noble gases are as follows:
the electronic configuration of He =
the electronic configuration of Ne =
the electronic configuration of Ar =
An atom of a main group element loses or gains electrons to obtain the electronic configuration of the noble gas closest to it in the periodic table to form ions.
There are two types of ions, cationic and anionic.
Cations are formed by losing electrons;thus they have fewer electrons than protons and are positively charged.
Anions are formed by gaining electrons;thus they have more electrons than protons and are negatively charged.
For example, Fluorine (F) atom has 9 electrons (

Answer to Problem 33P
1 electron must be gained
Explanation of Solution
The electronic configuration of I is
The nearest noble gas to Li is xenon (Xe), whose electronic configuration is
Therefore, I must gain one electron to achieve Xe atom's electronic configuration.
Because an electron is lost, the result is I- anion.
(c)
Interpretation:
Number of electrons must be gained/lost by sulfur to achieve a noble gas configuration should be determined.
Concept Introduction:
Electron configurations of noble gasses such as helium (He), neon (Ne) or argon (Ar) are stable because their electronic shells or subshells are completely filled. The electronic configuration of these noble gases are as follows:
the electronic configuration of He =
the electronic configuration of Ne =
the electronic configuration of Ar =
An atom of a main group element loses or gains electrons to obtain the electronic configuration of the noble gas closest to it in the periodic table to form ions.
There are two types of ions, cationic and anionic.
Cations are formed by losing electrons, thus they have fewer electrons than protons and are positively charged.
Anions are formed by gaining electrons, thus they have more electrons than protons and are negatively charged.
For example, Fluorine (F) atom has 9 electrons (

Answer to Problem 33P
2 electrons must be gained
Explanation of Solution
The electronic configuration of S is
The nearest noble gas to S is argon (Ar), whose electronic configuration is
Therefore, S must gain two electrons to achieve Ar atom's electronic configuration.
Because two electrons are lost, the result is S2-anion.
(d)
Interpretation:
Number of electrons must be gained/lost by strontium (Sr) to achieve a noble gas configuration should be determined.
Concept Introduction:
Electron configurations of noble gasses such as helium (He), neon (Ne) or argon (Ar) are stable because their electronic shells or subshells are completely filled. The electronic configuration of these noble gases are as follows:
the electronic configuration of He =
the electronic configuration of Ne =
the electronic configuration of Ar =
An atom of a main group element loses or gains electrons to obtain the electronic configuration of the noble gas closest to it in the periodic table to form ions.
There are two types of ions, cationic and anionic.
Cations are formed by losing electrons, thus they have fewer electrons than protons and are positively charged.
Anions are formed by gaining electrons, thus they have more electrons than protons and are negatively charged.
For example, Sodium (Na) atom has 11 electrons (

Answer to Problem 33P
2 electrons must be lost
Explanation of Solution
The electronic configuration of Sr is
The nearest noble gas to Sr is krypton (Kr), whose electronic configuration is
Therefore, Sr must lose two electrons to achieve Kr atom's electronic configuration.
Because two electrons are lost, the result is Sr2+cation.
Want to see more full solutions like this?
Chapter 3 Solutions
Loose Leaf for General, Organic and Biological Chemistry with Connect 2 Year Access Card
- How many chiral centers are there in the following molecule? HO 0 1 ○ 2 ♡ 4 'N'arrow_forwardThe following chemical structure represents a molecule of what molecular formula?arrow_forwardWhich region(s) of the following phospholipid is/are hydrophobic? RO I hydro-water phobic-dislikes = Hydrophobic dislikes water ○ I only Il only I and III only II and IV only O II, III, and IV only III || IVarrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning



