(a)
Interpretation:
A balanced equation for the following reaction is to be written.
Concept introduction:
In a balanced chemical equation, the total mass of reactants and products are equal in a balanced chemical equation, thus, it obeyed the law of conservation of mass.
Following are the steps to write a balanced chemical equation.
Step 1: Identify the most complex substance and choose an element such that the element must be present only in one reactant and one product. Place the stoichiometric coefficient before the element(s) such that the number of atoms of that element(s) is the same on both sides.
Step 2: Balance the remaining atoms by placing the
Step 3: In a balanced
Step 4: Check whether the chemical equation is balanced or not by counting the number of atoms of each element on both sides.
(a)
Answer to Problem 3.59P
The balanced chemical reaction is as follows:
Explanation of Solution
Start with
Nitrogen atoms are balanced. Balance potassium
Balance copper
Check whether the equation is balanced or not as follows:
Atoms of each element are the same on both sides, thus, the chemical reaction is balanced.
The balanced chemical reaction is as follows:
(b)
Interpretation:
A balanced equation for the following reaction is to be written.
Concept introduction:
In a balanced chemical equation, the total mass of reactants and products are equal in a balanced chemical equation, thus, it obeyed the law of conservation of mass.
Following are the steps to write a balanced chemical equation.
Step 1: Identify the most complex substance and choose an element such that the element must be present only in one reactant and one product. Place the stoichiometric coefficient before the element(s) such that the number of atoms of that element(s) is the same on both sides.
Step 2: Balance the remaining atoms by placing the stoichiometric coefficients before the element(s) such that the number of atoms of that element(s) is the same on both sides. Identify the least complex substance and end with it. Generally, oxygen atoms are balanced in last.
Step 3: In a balanced chemical reaction, the smallest whole number coefficients are most preferred. Hence, adjusting the coefficients in such a way that the smallest whole number coefficients are obtained for each element.
Step 4: Check whether the chemical equation is balanced or not by counting the number of atoms of each element on both sides.
(b)
Answer to Problem 3.59P
The balanced chemical reaction is as follows:
Explanation of Solution
The equation implies that
Chlorine atoms are balanced. Next, balance hydrogen
Hydrogen atoms are balanced. Place coefficient 1 in front of
Check whether the equation is balanced or not as follows:
Atoms of each element are the same on both sides, thus, the chemical reaction is balanced.
The balanced chemical reaction is as follows:
(c)
Interpretation:
A balanced equation for the following reaction is to be written.
Concept introduction:
In a balanced chemical equation, the total mass of reactants and products are equal in a balanced chemical equation, thus, it obeyed the law of conservation of mass.
Following are the steps to write a balanced chemical equation.
Step 1: Identify the most complex substance and choose an element such that the element must be present only in one reactant and one product. Place the stoichiometric coefficient before the element(s) such that the number of atoms of that element(s) is the same on both sides.
Step 2: Balance the remaining atoms by placing the stoichiometric coefficients before the element(s) such that the number of atoms of that element(s) is the same on both sides. Identify the least complex substance and end with it. Generally, oxygen atoms are balanced in last.
Step 3: In a balanced chemical reaction, the smallest whole number coefficients are most preferred. Hence, adjusting the coefficients in such a way that the smallest whole number coefficients are obtained for each element.
Step 4: Check whether the chemical equation is balanced or not by counting the number of atoms of each element on both sides.
(c)
Answer to Problem 3.59P
The balanced chemical reaction is as follows:
Explanation of Solution
The equation implies that
Fluorine atoms are balanced, next, balance hydrogen
Hydrogen atoms are balanced. One calcium
Check whether the equation is balanced or not as follows:
Atoms of each element are the same on both sides, thus, the chemical reaction is balanced.
The balanced chemical reaction is as follows:
(d)
Interpretation:
A balanced equation for the following reaction is to be written.
Concept introduction:
In a balanced chemical equation, the total mass of reactants and products are equal in a balanced chemical equation, thus, it obeyed the law of conservation of mass.
Following are the steps to write a balanced chemical equation.
Step 1: Identify the most complex substance and choose an element such that the element must be present only in one reactant and one product. Place the stoichiometric coefficient before the element(s) such that the number of atoms of that element(s) is the same on both sides.
Step 2: Balance the remaining atoms by placing the stoichiometric coefficients before the element(s) such that the number of atoms of that element(s) is the same on both sides. Identify the least complex substance and end with it. Generally, oxygen atoms are balanced in last.
Step 3: In a balanced chemical reaction, the smallest whole number coefficients are most preferred. Hence, adjusting the coefficients in such a way that the smallest whole number coefficients are obtained for each element.
Step 4: Check whether the chemical equation is balanced or not by counting the number of atoms of each element on both sides.
(d)
Answer to Problem 3.59P
The balanced chemical reaction is as follows:
Explanation of Solution
The equation implies that
Nitrogen atoms are balanced, hence, place the coefficient 1 in front of
Oxygen atoms are balanced. Two carbon
Check whether the equation is balanced or not as follows:
Atoms of each element are the same on both sides, thus, the chemical reaction is balanced.
The balanced chemical reaction is as follows:
Want to see more full solutions like this?
Chapter 3 Solutions
Student Solutions Manual For Silberberg Chemistry: The Molecular Nature Of Matter And Change With Advanced Topics
- Give the name of this compound, including stereochemistry if relevant: CICH2 CH3 Br CH₂CH=CH2 Write in the product, including stereochemistry where relevant, for these reactions. See end of ch. 8, p. 301-303. 1. 03 a) 2-methyl-2-pentene -> 2. Zn, H* Br2 b) 1-ethylcyclopentene -->arrow_forwardNonearrow_forward3. You may want to read paragraph 1.5 in your textbook before answering this question. Give electron configuration (short-hand notation is fine) for: (5 points) 3+ a) Manganese atom and Mn³+ b) Se atom c) Cu atom and Cu+arrow_forward
- However, why are intermolecular forces in metallic and ionic compounds not discussed as extensively? Additionally, what specific types of intermolecular attractions exist in metals and ionic compoundsarrow_forwardWhat is the preparation of 1 Liter of 0.1M NH4Cl buffer at pH 9.0 with solid NH4Cl and 0.1M NaOH. How would I calculate the math to describe this preparation? How would I use Henderson-Hasselbach equation?arrow_forwardC Predict the major products of this organic reaction. Be sure you use wedge and dash bonds when necessary, for example to distinguish between major products with different stereochemistry. : ☐ + x G C RCO₂H Click and drag to start drawing a structure.arrow_forward
- Fill in the blanks by selecting the appropriate term from below: For a process that is non-spontaneous and that favors products at equilibrium, we know that a) ΔrG∘ΔrG∘ _________, b) ΔunivSΔunivS _________, c) ΔsysSΔsysS _________, and d) ΔrH∘ΔrH∘ _________.arrow_forwardHighest occupied molecular orbital Lowest unoccupied molecular orbital Label all nodes and regions of highest and lowest electron density for both orbitals.arrow_forwardRelative Intensity Part VI. consider the multi-step reaction below for compounds A, B, and C. These compounds were subjected to mass spectrometric analysis and the following spectra for A, B, and C was obtained. Draw the structure of B and C and match all three compounds to the correct spectra. Relative Intensity Relative Intensity 20 NaоH 0103 Br (B) H2504 → (c) (A) 100- MS-NU-0547 80 40 20 31 10 20 100- MS2016-05353CM 80 60 100 MS-NJ-09-3 80 60 40 20 45 J.L 80 S1 84 M+ absent राग 135 137 S2 62 164 166 11 S3 25 50 75 100 125 150 175 m/zarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY