Concept explainers
(a)
Interpretation:
The molecular formula of the compound with empirical formula
Concept introduction:
An empirical formula gives the simplest whole number ratio of atoms of each element present in a compound. The molecular formula tells the exact number of atoms of each element present in a compound.
Following are the steps to determine the molecular formula of a compound.
Step 1: Add the molar mass of each element multiplied by its number of atoms present in the empirical formula to obtain the empirical formula mass for the compound.
Step 2: Divide the molar mass of the compound by its empirical formula mass to obtain the whole number. The formula to calculate the whole number multiple is as follows:
Step 3: Multiply the whole number with the subscript of each element present in the empirical formula. This gives the molecular formula of the compound.
(b)
Interpretation:
The molecular formula of the compound with empirical formula
Concept introduction:
An empirical formula gives the simplest whole number ratio of atoms of each element present in a compound. The molecular formula tells the exact number of atoms of each element present in a compound.
Following are the steps to determine the molecular formula of a compound.
Step 1: Add the molar mass of each element multiplied by its number of atoms present in the empirical formula to obtain the empirical formula mass for the compound.
Step 2: Divide the molar mass of the compound by its empirical formula mass to obtain the whole number. The formula to calculate the whole number multiple is as follows:
Step 3: Multiply the whole number with the subscript of each element present in the empirical formula. This gives the molecular formula of the compound.
(c)
Interpretation:
The molecular formula of the compound with empirical formula
Concept introduction:
An empirical formula gives the simplest whole number ratio of atoms of each element present in a compound. The molecular formula tells the exact number of atoms of each element present in a compound.
Following are the steps to determine the molecular formula of a compound.
Step 1: Add the molar mass of each element multiplied by its number of atoms present in the empirical formula to obtain the empirical formula mass for the compound.
Step 2: Divide the molar mass of the compound by its empirical formula mass to obtain the whole number. The formula to calculate the whole number multiple is as follows:
Step 3: Multiply the whole number with the subscript of each element present in the empirical formula. This gives the molecular formula of the compound.
(d)
Interpretation:
The molecular formula of the compound with empirical formula
Concept introduction:
An empirical formula gives the simplest whole number ratio of atoms of each element present in a molecule. The molecular formula tells the exact number of atoms of each element present in a molecule.
Following are the steps to determine the molecular formula of a compound.
Step 1: Add the molar mass of each element multiplied by its number of atoms present in the empirical formula to obtain the empirical formula mass for the compound.
Step 2: Divide the molar mass of the compound by its empirical formula mass to obtain the whole number. The formula to calculate the whole number multiple is as follows:
Step 3: Multiply the whole number with the subscript of each element present in the empirical formula. This gives the molecular formula of the compound.
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Student Solutions Manual For Silberberg Chemistry: The Molecular Nature Of Matter And Change With Advanced Topics
- One liter of N2(g) at 2.1 bar and two liters of Ar(g) at 3.4 bar are mixed in a 4.0 liter flask to form an ideal gas mixture. Calculate the value of the final pressure of the mixture if the initial and final temperature of the gases are the same. Repeat this calculation if the initial temperature of the N2(g) and Ar(g) are 304 K and 402 K, respectively, and the final temperature of the mixture is 377 K.arrow_forward10 5 4. These four 'H NMR spectra were recorded from different isomers with molecular formula CsH,CIO. They all contain a carbonyl group. Determine the structure of the different isomers. 0 10 5 0 10 5 10 9 8 7 6 5 4 3. 1 0 9 10 10 66 9 0 10 9 10 5 1 8 7 6 5 3 2 -a 8 7 6 5 1 10 9 8 7 6 5 22 2 1 0 3 2 16 1 0 3 2 1 2 6 0arrow_forwardUse the expression below to ⚫ calculate its value and report it to the proper number of significant digits (you may need to round your answer). ⚫ calculate the % error (or % relative error or % inherent error) ⚫ calculate the absolute error. (20.54±0.02 × 0.254±0.003) / (3.21±0.05) = Value: % Error: Absolute error: ± | % (only 1 significant digit) (only 1 significant digit)arrow_forward
- In each case (more ductile, more brittle, more tough or resistant), indicate which parameter has a larger value. parameter Elastic limit Tensile strength more ductile Strain at break Strength Elastic modulus more fragile more tough or resistantarrow_forwardNonearrow_forwardWhat functional groups are present in this IRarrow_forward
- In each case (more ductile, more brittle, more tough or resistant), indicate which parameter has a larger value. parameter Elastic limit Tensile strength more ductile Strain at break Strength Elastic modulus more fragile more tough or resistantarrow_forward4) A typical bottle of pop holds carbon dioxide at a pressure of 5 atm. What is the concentration of carbon dioxide in th solution? 5) A stream flowing over rocks and such is exposed to the atmosphere and well aerated. What would be the nitrogen concentration in the water at 25°C? (Air pressure is 1.000 bar.)arrow_forwardUse the expression below to ⚫ calculate its value and report it to the proper number of significant digits (you may need to round your answer). ⚫ calculate the % error (or % relative error or % inherent error) ⚫ calculate the absolute error. (30.078±0.003) - (20.174±0.001) + (9.813±0.005) = Value: % Error: absolute error: ± % (only 1 significant digit) (only 1 significant digit)arrow_forward
- Don't used Ai solution and don't used hand raitingarrow_forwardCircle the letter next to the most appropriate response. 1) Which is likely to be the least soluble with water? a) hexane b) acetone c) trichloromethane d) trinitro-toluene 2) Which is likely to be the most soluble in 3,4-dimethyloctane? a) hexane b) acetone c) trichloromethane d) trinitro-toluene 3) When ammonium nitrate is dissolved in water, the solution: a) gets warmer. b) gets colder. c) stays the same temperature. d) is none of the above because potassium nitrate is insoluble.arrow_forwardNonearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY