
Concept explainers
(a)
Interpretation:
The mass
Concept introduction:
Molar mass is defined as the mass of
(a)

Answer to Problem 3.19P
The mass
Explanation of Solution
The formula to calculate the molar mass of
Substitute
The expression to calculate the mass
Substitute
The mass
(b)
Interpretation:
The mass
Concept introduction:
One mole is defined as the amount of substance that contains the same number of entities such as molecules, ions, atoms as the number of atoms in
Molar mass is defined as the mass of
Following are the steps to calculate the mass of a chemical substance when a number of molecules are given.
Step 1: Determine the amount of substance in moles by using Avogadro’s number. The expression to calculate the moles of a chemical substance is as follows:
Step 2: Multiply the moles with the molar mass of the chemical substance to obtain the mass of chemical substance in grams. The formula to calculate the mass of a substance in grams is as follows:
(b)

Answer to Problem 3.19P
The mass
Explanation of Solution
Dichlorine heptoxide is an inorganic compound with the chemical formula
The formula to calculate the molar mass of
Substitute
The expression to calculate moles of
Substitute
The expression to calculate the mass
Substitute
The mass
(c)
Interpretation:
The number of moles and formula units in
Concept introduction:
One mole is defined as the amount of substance that contains the same number of entities such as molecules, ions, atoms as the number of atoms in
Molar mass is defined as the mass of
A formula unit is used for the ionic compound to represent their empirical formula. The steps to determine the formula unit of an ionic compound from the given mass are as follows:
Step 1: Divide the given mass of the ionic compound with the molar mass to calculate the moles. The expression to calculate the moles of an ionic compound when the mass is given is as follows:
Step 2: Multiply the calculated moles with the Avogadro’s number to determine the formula units of an ionic compound. The expression to determine the formula unit is as follows:
(c)

Answer to Problem 3.19P
The number of moles and formula unit in
Explanation of Solution
Lithium sulfate is an ionic compound with the chemical formula
The formula to calculate the molar mass of
Substitute
The expression to calculate moles of
Substitute
The expression to calculate formula units (FU) of
Substitute
The number of moles and formula unit in
(d)
Interpretation:
The number of lithium ions, sulfate ions, sulfur atoms and oxygen atoms in the mass of the compound
Concept introduction:
A formula unit is used for the ionic compound to represent their empirical formula. The molecular formula of a compound tells the number of atoms/ions of each element present in the compound.
A number of ions in a chemical compound is directly linked to the formula unit of the compound.
(d)

Answer to Problem 3.19P
The number of lithium ions is
Explanation of Solution
The expression to calculate the number of ions/atoms in
Substitute
Substitute
Substitute
Substitute
The number of lithium ions is
Want to see more full solutions like this?
Chapter 3 Solutions
Student Solutions Manual For Silberberg Chemistry: The Molecular Nature Of Matter And Change With Advanced Topics
- For Raman spectroscopy/imaging, which statement is not true regarding its disadvantages? a) Limited spatial resolution. b) Short integration time. c) A one-dimensional technique. d) Weak signal, only 1 in 108 incident photons is Raman scattered. e) Fluorescence interference.arrow_forwardUsing a cell of known pathlength b = 1.25115 x 10-3 cm, a water absorption spectrum was measured. The band at 1645 cm-1, assigned to the O-H bending, showed an absorbance, A, of 1.40. a) Assuming that water density is 1.00 g/mL, calculate the water molar concentration c (hint: M= mole/L) b) Calculate the molar absorptivity, a, of the 1645 cm-1 band c) The transmitted light, I, can be written as I= Ioexp(-xb), where x is the absorption coefficient (sometimes designated as alpha), Io is the input light, and b is the cell pathlength. Prove that x= (ln10)*x*c. (Please provide a full derivation of the equation for x from the equation for I). d) Calculate x for the 1645 cm-1 bandarrow_forwardI need help with the follloaingarrow_forward
- For a CARS experiment on a Raman band 918 cm-1, if omega1= 1280 nm, calculate the omega2 in wavelength (nm) and the CARS output in wavelength (nm).arrow_forwardI need help with the following questionarrow_forwardFor CARS, which statement is not true regarding its advantages? a) Contrast signal based on vibrational characteristics, no need for fluorescent tagging. b) Stronger signals than spontaneous Raman. c) Suffers from fluorescence interference, because CARS signal is at high frequency. d) Faster, more efficient imaging for real-time analysis. e) Higher resolution than spontaneous Raman microscopy.arrow_forward
- Draw the major product of the Claisen condensation reaction between two molecules of this ester. Ignore inorganic byproducts. Incorrect, 5 attempts remaining 1. NaOCH3/CH3OH 2. Acidic workup Select to Draw O Incorrect, 5 attempts remaining The total number of carbons in the parent chain is incorrect. Review the reaction conditions including starting materials and/or intermediate structures and recount the number of carbon atoms in the parent chain of your structure. OKarrow_forwardUsing a cell of known pathlength b = 1.25115 x 10-3 cm, a water absorption spectrum was measured. The band at 1645 cm-1, assigned to the O-H bending, showed an absorbance, A, of 1.40. a) Assuming that water density is 1.00 g/mL, calculate the water molar concentration c (hint: M= mole/L) b) Calculate the molar absorptivity, a, of the 1645 cm-1 band c) The transmitted light, I, can be written as I= Ioexp(-xb), where x is the absorption coefficient (sometimes designated as alpha), Io is the input light, and b is the cell pathlength. Prove that x= (ln10)*x*c d) Calculate x for the 1645 cm-1 bandarrow_forwardConvert 1.38 eV into wavelength (nm) and wavenumber (cm-1) (c = 2.998 x 108 m/s; h = 6.626 x 10-34 J*s).arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





