Concept explainers
Interpretation:
The ability of describing by astronomers that the elements present in distant stars by analyzing the
Concept Introduction:
The electrons are excited thermally when the light is used by an object. As a result, an emission spectrum comes. The emission spectrum of a substance is seen by energizing a sample of material with either thermal energy or some other form of energy (such as a high-voltage electrical discharge if the substance is a gas). A “red-hot” or “white-hot” iron bar freshly removed from a fire produces a characteristic glow. The glow is the visible portion of its emission spectrum. The heat given off by the same iron bar is another portion of its emission spectrum called the infrared region. A feature common to the emission spectrum of the sun and that of a heated solid is that both are continuous. Hence, all
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Chemistry: Atoms First V1
- Which among the following are not quantized? a number of plastic bags in a box; b cars passing through a toll plaza in a day; c birds in an aviary; d flow of a river in m3/hr; e percentage of salt in a solution.arrow_forwardDetermine whether each statement that follows is true or false: a Electron energies are quantized in excited states but not in the ground state. b Line spectra of the elements are experimental evidence of the quantization of electron energies. c Energy is released as an electron passes from ground state to an excited state. d The energy of an electron may be between two quantized energy levels. e The Bohr model explanation of line spectra is still thought to be correct. f The quantum mechanical model of the atom describes orbitals in which electrons travel around the nucleus. g Orbitals are regions in which there is a high probability of finding an electron. h All energy sublevels have the same number of orbitals. i The 3p orbitals of an atom are larger than its 2p orbitals but smaller than its 4p orbitals. j At a given sublevel, the maximum number of d electrons is 5. k The halogens are found in Group 7A/17 of the periodic table. l The dot structure of the alkaline earths is X, where X is the symbol of element in the family. m Stable ions formed by alkaline earth metals are isoelectronic with noble gas atoms. n Atomic numbers 23 and 45 both belong to transition elements. o Atomic number 52, 35, and 18 are arranged in order of increasing atomic size. p Atomic number 7, 16, and 35 are all nonmetals.arrow_forwardAre the following statements true for the hydrogen atom only, true for all atoms, or not true for any atoms? a. The principal quantum number completely determines the energy of a given electron. b. The angular momentum quantum number, l, determines the shapes of the atomic orbitals. c. The magnetic quantum number, ml, determines the direction that the atomic orbitals point in space.arrow_forward
- The spectra of hydrogen and of calcium are shown in Figure 6.13. What causes the lines in these spectra? Why are the colors of the lines different? Suggest a reason for the observation that the spectrum of calcium is more complicated than the spectrum of hydrogen.arrow_forwardWrite complete electron configurations for atoms whose electron configurations end as follows. a. 3p5 b. 4d7 c. 4s2 d. 3d1arrow_forwardWrite complete electron configurations for atoms whose electron configurations end as follows. a. 4p2 b. 3d10 c. 5s1 d. 4p6arrow_forward
- Element 106 has been named seaborgium, Sg, in honor of Glenn Seaborg, discoverer of the first transuraniurn element. a. Write the expected electron configuration for element 106. b. What other element would be most like element 106 in its properties?arrow_forwardAdvances in technology and science often progress hand-in-hand. What advance in technology was necessary to set the stage for the discovery of the electron?arrow_forwardGive electron configurations according to the Bohr model for each of the following elements. Indicate which of these elements you expect to be the most reactive and the least reactive. a. He b. Al c. Be d. Ne e. Oarrow_forward
- The following shapes each represent an orbital of an atom in a hypothetical universe. The small circle is the location of the nucleus in each orbital. a If you placed an electron in each orbital, which one would be higher in energy? b When an electron makes a transition from the orbital represented on the right to the orbital on the left, would you expect energy to be absorbed or released? c Draw a sketch of an orbital of the same type that would be higher in energy than either of the two pictured orbitals.arrow_forwardBased on periodic table position, select the two elements in each set of elements that would be expected to have similar chemical properties. a. 11Na, 14Si, 23V, 55Cs b. 13Al, 19K, 32Ge, 50Sn c. 37Rb, 38Sr, 54Xe, 56Ba d. 2He, 6C, 8O, 10Nearrow_forwardBased on the Aufbau principle and the n + rule, which of following statements is correct? (a) the 4s orbital fills before the 4p orbitals (b) the 5d orbitals fill before the 6s orbital (c) the 3d orbitals fill before the 3p orbitals (d) the 4f orbitals fill before the 5p orbitalsarrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning