(a)
Interpretation:
The
Concept Introduction:
The value of
(a)
Answer to Problem 3.49P
The
Explanation of Solution
Given Information:
The virial equation is given as
For Nitrogen trifluoride, the second and third virial coefficients are:
From given virial equation
Put the given values
On solving the equation
Since volume cannot be negative or complex number. Hence, we are only considering the real part of the complex number as volume.
Hence,
So,
(b)
Interpretation:
The
Concept Introduction:
In order to find value of
(b)
Answer to Problem 3.49P
The
Explanation of Solution
Given Information:
The virial equation in reduced conditions is given as
Here
For Nitrogen trifluoride at given temperature and pressure, the critical conditions are given as,
For calculation of
And
So,
and
Hence, value of
And value of compressibility factor,
(c)
Interpretation:
The
Concept Introduction:
The Redlich/Kwong equations is an iterative procedure. So, we will use hit and trial procedure and guess some values of
According to Redlich/Kwong equations, the molar volume of Nitrogen trifluoride can be found using formula:
(c)
Answer to Problem 3.49P
From Redlich/Kwong equations, the molar volume of Nitrogen trifluoride is:
Explanation of Solution
Given Information:
The Redlich/Kwong equation is
Here
From table 3.1 in the example based on Redlich/Kwong equation given in book, the values used to calculate the terms in equation (1) are:
For Redlich/Kwong:
And
So,
For Nitrogen trifluoride, put values in equation (1)
Using hit and trial method and compare both side of equation, the calculated value from scientific calculator 991ES-PLUS or 991MS is:
Hence,
(d)
Interpretation:
The
Concept Introduction:
The Soave/Redlich/Kwong equations is an iterative procedure. So, we will use hit and trial procedure and guess some values of
According to Redlich/Kwong equations, the molar volume of Nitrogen trifluoride can be found using formula:
(d)
Answer to Problem 3.49P
From Soave/Redlich/Kwong equations, the molar volume of Nitrogen trifluoride is:
Explanation of Solution
Given Information:
The Soave/Redlich/Kwong equation is
Here
From table 3.1 in the example based on Soave/Redlich/Kwong equation given in book, the values used to calculate the terms in equation (1) are:
For Soave/Redlich/Kwong:
The values of reduced temperature and pressure are same as found in subpart (c), From reference subpart (c),
So,
For Nitrogen trifluoride, put values in equation (1)
Using hit and trial method and compare both side of equation, the calculated value from scientific calculator 991ES-PLUS or 991MS is:
Hence,
(e)
Interpretation:
The
Concept Introduction:
The Peng/Robinson equation is an iterative procedure. So, we will use hit and trial procedure and guess some values of
According to Peng/Robinson equation, the molar volume of Nitrogen trifluoride can be found using formula:
(e)
Answer to Problem 3.49P
From Soave/Redlich/Kwong equations, the molar volume of Nitrogen trifluoride is:
Explanation of Solution
Given Information:
The Peng/Robinson equation is
Here
From table 3.1 in the example based on Peng/Robinson equation given in book, the values used to calculate the terms in equation (1) are:
For Peng/Robinson equation:
The values of reduced temperature and pressure are same as found in subpart (c), From reference subpart (c),
So,
For Nitrogen trifluoride, put values in equation (1)
Using hit and trial method and compare both side of equation, the calculated value from scientific calculator 991ES-PLUS or 991MS is:
Hence,
Want to see more full solutions like this?
Chapter 3 Solutions
Loose Leaf For Introduction To Chemical Engineering Thermodynamics
- Q2/ An adsorption study is set up in laboratory by adding a known amount of activated carbon to six which contain 200 mL of an industrial waste. An additional flask containing 200 mL of waste but no c is run as a blank. Plot the Langmuir isotherm and determine the values of the constants. Flask No. Mass of C (mg) Volume in Final COD Flask (mL) (mg C/L) 1 804 200 4.7 2 668 200 7.0 3 512 200 9.31 4 393 200 16.6 C 5 313 200 32.5 6 238 200 62.8 7 0 200 250arrow_forwardمشر on ۲/۱ Two rods (fins) having same dimensions, one made of brass(k=85 m K) and the other of copper (k = 375 W/m K), having one of their ends inserted into a furnace. At a section 10.5 cm a way from the furnace, the temperature brass rod 120°C. Find the distance at which the same temperature would be reached in the copper rod ? both ends are exposed to the same environment. 22.05 ofthearrow_forward4.59 Using the unilateral z-transform, solve the following difference equations with the given initial conditions. (a) y[n]-3y[n-1] = x[n], with x[n] = 4u[n], y[− 1] = 1 (b) y[n]-5y[n-1]+6y[n-2]= x[n], with x[n] = u[n], y[-1] = 3, y[-2]= 2 Ans. (a) y[n] = -2+9(3)", n ≥ -1 (b) y[n]=+8(2)" - (3)", n ≥ -2arrow_forward
- (30) 6. In a process design, the following process streams must be cooled or heated: Stream No mCp Temperature In Temperature Out °C °C kW/°C 1 5 350 270 2 9 270 120 3 3 100 320 4 5 120 288 Use the MUMNE algorithm for heat exchanger networks with a minimum approach temperature of 20°C. (5) a. Determine the temperature interval diagram. (3) (2) (10) (10) b. Determine the cascade diagram, the pinch temperatures, and the minimum hot and cold utilities. c. Determine the minimum number of heat exchangers above and below the pinch. d. Determine a valid heat exchange network above the pinch. e. Determine a valid heat exchange network below the pinch.arrow_forwardUse this equation to solve it.arrow_forwardQ1: Consider the following transfer function G(s) 5e-s 15s +1 1. What is the study state gain 2. What is the time constant 3. What is the value of the output at the end if the input is a unit step 4. What is the output value if the input is an impulse function with amplitude equals to 3, at t=7 5. When the output will be 3.5 if the input is a unit steparrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The