EBK INTRODUCTION TO CHEMICAL ENGINEERIN
EBK INTRODUCTION TO CHEMICAL ENGINEERIN
8th Edition
ISBN: 9781259878091
Author: SMITH
Publisher: MCGRAW HILL BOOK COMPANY
Question
Book Icon
Chapter 3, Problem 3.48P

(a)

Interpretation Introduction

Interpretation:

The Zand V value for Boron trichloride must calculate at 300K temperature and 1.5bar pressure by the truncated virial equation with given virial coefficients.

Concept Introduction:

The value of Z is easily calculated by the given truncated virial equation and value of V is find out by PV=ZnRT .

(a)

Expert Solution
Check Mark

Answer to Problem 3.48P

The Zand V value for Boron trichloride are V=15667.9cm3mol and Z=0.9422 respectively.

Explanation of Solution

Given Information:

The virial equation is given as

Z=PVRT=1+BV+CV2

gas constant R in CGS unit is 82.05746cm3barmolK

P=1.5bar

T=300K

For Boron trichloride, the second and third virial coefficients are: B=-724cm3.mol-1 and C=93866cm6.mol-2 .

From given virial equation

Z=PVRT=1+BV+CV2

PVRT=1+BV+CV2

Put the given values

1.5bar×V82.05746 cm 3 bar molK×300K=1+-724 cm 3 molV+93866 cm 6 mol 2 V26.09×105V cm3mol=V2724 cm 3 molV+93866 cm 6 mol 2 V26.09×105V3=V2724V+93866

On solving the equation

V=15667.9cm3mol

So,

Z=PVRT=1.5bar×15667.9 cm 3 mol82.05746 cm 3 bar molK×300KZ=0.9422

(b)

Interpretation Introduction

Interpretation:

The Zand V value for Boron trichloride must calculate at 300K temperature and 1.5bar pressure by the truncated virial equation with a value of B virial coefficient from generalized Pitzer correlation.

Concept Introduction:

In order to find value of Z from given truncated virial equation, first we calculate B virial coefficient from generalized Pitzer correlation and then value of V followed by value of Z find out by PV=ZnRT .

(b)

Expert Solution
Check Mark

Answer to Problem 3.48P

The Zand V value for Boron trichloride are V=15989.4cm3mol and Z=0.961 respectively.

Explanation of Solution

Given Information:

The virial equation in reduced conditions is given as

Z=1+[B0+ωB1]TrPrOr,V=RTP+RTCPC[B0+ωB1]

Here B0=0.0830.422Tr1.6 and B1=0.1390.172Tr4.2

For Boron trichlorideat given temperature and pressure, the critical conditions are given as,

TC=452Kand PC=38.7bar, ω=0.086

gas constant R in CGS unit is 83.144cm3barKmol

P=1.5bar

T=300K

For calculation of B virial coefficient from generalized Pitzer correlation,

Tr=TTcTr=300K452K=0.664

And

Pr=PPcPr=1.5bar38.7bar=0.0387

So,

B0=0.0830.422Tr 1.6B0=0.0830.4220 .664 1.6B0=0.729

and

B1=0.1390.172Tr 4.2B1=0.1390.1720 .664 4.2B1=0.821

Hence, value of V is

V=RTP+RTCPC[B0+ωB1]V=83.144 cm 3 bar Kmol×300K1.5bar+83.144 cm 3 bar Kmol×452K38.7bar[0.729+0.086×0.821]V=15989.4 cm3mol

And value of compressibility factor,

Z=PVRT=1.5bar×15989.4 cm 3 mol83.144 cm 3 bar molK×300KZ=0.961

(c)

Interpretation Introduction

Interpretation:

The Zand V value for Boron trichloridemust calculate at 300K temperature and 1.5bar pressure by the Redlich/Kwong equation.

Concept Introduction:

The Redlich/Kwong equations is an iterative procedure. So, we will use hit and trial procedure and guess some values of Z to achieve convergent value.

According to Redlich/Kwong equations, the molar volume of Boron trichloridecan be found using formula:

V=ZRTP

(c)

Expert Solution
Check Mark

Answer to Problem 3.48P

From Redlich/Kwong equations, the molar volume of Boron trichlorideis:

V=15930.4cm3mol and Z=0.958 respectively.

Explanation of Solution

Given Information:

The Redlich/Kwong equation is

Z=1+βqβZβ(Z+εβ)(Z+σβ)......(1)

Here

β=ΩPrTr and q=φα(Tr)ΩTr

From table 3.1 in the example based on Redlich/Kwong equation given in book, the values used to calculate the terms in equation (1) are:

For Redlich/Kwong:

ε=0,σ=1,ψ=0.42748,Ω=0.08664andα(Tr)=Tr1/2

gas constant R in CGS unit is 83.144cm3barKmol, P=1.5bar

T=300K

Tr=TTcTr=300K452K=0.664

And

Pr=PPcPr=1.5bar38.7bar=0.0387

So,

β=ΩPrTr=0.08664×0.03870.664β=0.005

α(Tr)=Tr1/2=0.6640.5=1.2272

q=φα(Tr)ΩTr=0.42748×1.22720.08664×0.664q=9.119

For Boron trichloride, put values in equation (1)

Z=1+βqβZβ(Z+εβ)(Z+σβ)

Z=1+0.0059.119×0.005×Z0.005(Z+0×0.005)(Z+1×0.005)

Using hit and trial method and compare both side of equation, the calculated value from scientific calculator 991ES-PLUS or 991MS is:

Z=0.958

Hence,

V=ZRTP=0.958×83.144 cm 3 bar Kmol×300K1.5barV=15930.4 cm3mol

(d)

Interpretation Introduction

Interpretation:

The Zand V value for Boron trichloridemust calculate at 300K temperature and 15bar pressure by the Soave/Redlich/Kwong equation.

Concept Introduction:

The Soave/Redlich/Kwong equations is an iterative procedure. So, we will use hit and trial procedure and guess some values of Z to achieve convergent value.

According to Redlich/Kwong equations, the molar volume of Boron trichloridecan be found using formula:

V=ZRTP

(d)

Expert Solution
Check Mark

Answer to Problem 3.48P

From Soave/Redlich/Kwong equations, the molar volume of Boron trichlorideis:

V=15913.76cm3mol and Z=0.957 respectively.

Explanation of Solution

Given Information:

The Soave/Redlich/Kwong equation is

Z=1+βqβZβ(Z+εβ)(Z+σβ)......(1)

Here

β=ΩPrTr and q=φα(Tr)ΩTr

From table 3.1 in the example based on Soave/Redlich/Kwong equation given in book, the values used to calculate the terms in equation (1) are:

For Soave/Redlich/Kwong:

ε=0,σ=1,ψ=0.42748,Ω=0.08664andα(Tr)=[1+(0.480+1.574ω0.176ω2)(1Tr1/2)]2

gas constant R in CGS unit is 83.144cm3barKmol, P=1.5bar

T=300K

The values of reduced temperature and pressure are same as found in subpart (c), From reference subpart (c),

Tr=0.664 and Pr=0.0387

So,

β=ΩPrTr=0.08664×0.03870.664β=0.005

α(Tr)=[1+(0.480+1.574ω0.176ω2)(1Tr1/2)]2α(Tr)=[1+(0.480+1.574×0.0860.176×0.0862)(10.6641/2)]2α(Tr)=1.2403

q=φα(Tr)ΩTr=0.42748×1.24030.08664×0.664q=9.22

For Boron trichloride, put values in equation (1)

Z=1+βqβZβ(Z+εβ)(Z+σβ)

Z=1+0.0059.22×0.005×Z0.005(Z+0×0.005)(Z+1×0.005)

Using hit and trial method and compare both side of equation, the calculated value from scientific calculator 991ES-PLUS or 991MS is:

Z=0.957

Hence,

V=ZRTP=0.957×83.144 cm 3 bar Kmol×300K1.5barV=15913.76 cm3mol

(e)

Interpretation Introduction

Interpretation:

The Zand V value for Boron trichloridemust calculate at 300K temperature and 1.5bar pressure by Peng/Robinson equation.

Concept Introduction:

The Peng/Robinson equation is an iterative procedure. So, we will use hit and trial procedure and guess some values of Z to achieve convergent value.

According to Peng/Robinson equation, the molar volume of Boron trichloridecan be found using formula:

V=ZRTP

(e)

Expert Solution
Check Mark

Answer to Problem 3.48P

From Soave/Redlich/Kwong equations, the molar volume of Boron trichlorideis:

V=15880.504cm3mol and Z=0.955 respectively.

Explanation of Solution

Given Information:

The Peng/Robinson equation is

Z=1+βqβZβ(Z+εβ)(Z+σβ)......(1)

Here

β=ΩPrTr and q=φα(Tr)ΩTr

From table 3.1 in the example based on Peng/Robinson equation given in book, the values used to calculate the terms in equation (1) are:

For Peng/Robinson equation:

ε=12,σ=1+2,ψ=0.45724,Ω=0.07779andZC=0.30740α(Tr)=[1+(0.37464+1.54226ω0.26992ω2)(1Tr1/2)]2

gas constant R in CGS unit is 83.144cm3barKmol, P=1.5bar

T=300K

The values of reduced temperature and pressure are same as found in subpart (c), From reference subpart (c),

Tr=0.664 and Pr=0.0387

So,

β=ΩPrTr=0.07779×0.03870.664β=0.0045

α(Tr)=[1+(0.37464+1.54226ω0.26992ω2)(1Tr1/2)]2α(Tr)=[1+(0.37464+1.54226×0.0860.26992×0.0862)(10.6641/2)]2α(Tr)=1.196

q=ψα(Tr)ΩTr=0.45724×1.1960.07779×0.664q=10.587

For Boron trichloride, put values in equation (1)

Z=1+βqβZβ(Z+εβ)(Z+σβ)

Z=1+0.004510.587×0.0045×Z0.0045(Z+(12)×0.0045)(Z+(1+2)×0.0045)

Using hit and trial method and compare both side of equation, the calculated value from scientific calculator 991ES-PLUS or 991MS is:

Z=0.955

Hence,

V=ZRTP=0.955×83.144 cm 3 bar Kmol×300K1.5barV=15880.504 cm3mol

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Do question 9 please! Question 7 Is just there for reference!!
7) You are tasked with separating two proteins by ion exchange chromatography on a 30 cm long column with an inner diameter of 2 cm. The resin has a diameter of 100 μm and a void fraction of 0.3, and your mobile phase flows through the column at a rate of Q = 5 cm³/min. The Van Deemter coefficients A, B, and C have been determined to be 0.0228 cm, 0.0036 cm²/min, and 0.00053 min, respectively, for both proteins. Protein A elutes from the column with an average retention time of 27 min and standard deviation of 0.8 min. Protein B elutes from the column. with an average retention time of 33.8 min and standard deviation of 1.0. a) How many theoretical plates does the column contain? b) What flow rate (Q) will give you the maximum resolution? c) What is the minimum height of a theoretical plate for the system?
4) A fixed bed adsorption unit contains rigid (incompressible) silica particles with a diameter of 120 um and porosity of 0.3. The resin bed is 200 cm long and has a diameter of 15 cm. A protein solution is pumped into the column at a rate of 50 L/min, and the mobile phase has a viscosity of 1.2 CP. a) What is the pressure drop for this system (in bar)? b) What would be the pressure drop if the particle diameter were decreased to 30 μm?

Chapter 3 Solutions

EBK INTRODUCTION TO CHEMICAL ENGINEERIN

Ch. 3 - Prob. 3.11PCh. 3 - Prob. 3.12PCh. 3 - Prob. 3.13PCh. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Prob. 3.16PCh. 3 - Prob. 3.17PCh. 3 - Prob. 3.18PCh. 3 - Prob. 3.19PCh. 3 - Prob. 3.20PCh. 3 - Prob. 3.21PCh. 3 - Prob. 3.22PCh. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - Prob. 3.26PCh. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - Prob. 3.30PCh. 3 - Prob. 3.31PCh. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - Prob. 3.35PCh. 3 - Prob. 3.36PCh. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - Prob. 3.39PCh. 3 - Prob. 3.40PCh. 3 - Prob. 3.41PCh. 3 - Prob. 3.42PCh. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - Prob. 3.47PCh. 3 - Prob. 3.48PCh. 3 - Prob. 3.49PCh. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - Prob. 3.53PCh. 3 - Prob. 3.54PCh. 3 - Prob. 3.55PCh. 3 - Prob. 3.56PCh. 3 - Prob. 3.57PCh. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Prob. 3.63PCh. 3 - Prob. 3.64PCh. 3 - Prob. 3.65PCh. 3 - Prob. 3.66PCh. 3 - Prob. 3.67PCh. 3 - Prob. 3.68PCh. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - Prob. 3.72PCh. 3 - Prob. 3.73PCh. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - Prob. 3.79PCh. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - Prob. 3.82PCh. 3 - Prob. 3.83PCh. 3 - Prob. 3.84PCh. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - Prob. 3.93PCh. 3 - Prob. 3.94PCh. 3 - Prob. 3.95P
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The