(a)
Interpretation:
The
Concept Introduction:
The value of
(a)
Answer to Problem 3.44P
The
Explanation of Solution
Given Information:
The virial equation is given as
For ethylene, the second and third virial coefficients are:
From given virial equation
Put the given values
On solving the equation
So,
(b)
Interpretation:
The
Concept Introduction:
In order to find value of
(b)
Answer to Problem 3.44P
The
Explanation of Solution
Given Information:
The virial equation in reduced conditions is given as
Here
For ethylene at given temperature and pressure, the critical conditions are written from table B.1 in appendix B,
For calculation of
And
So,
and
Hence, value of
And value of compressibility factor,
(c)
Interpretation:
The
Concept Introduction:
The Redlich/Kwong equations is an iterative procedure. So, we will use hit and trial procedure and guess some values of
According to Redlich/Kwong equations, the molar volume of saturated vapor can be found using formula:
(c)
Answer to Problem 3.44P
From Redlich/Kwong equations, the molar volume of ethylene is:
Explanation of Solution
Given Information:
The Redlich/Kwong equation is
....(1)
Here
From table 3.1 in the example based on Redlich/Kwong equation given in book, the values used to calculate the terms in equation (1) are:
For Redlich/Kwong:
And,
So,
For ethylene, put values in equation (1)
Using hit and trial method and compare both side of equation, the calculated value is:
Hence,
(d)
Interpretation:
The
Concept Introduction:
The Soave/Redlich/Kwong equations is an iterative procedure. So, we will use hit and trial procedure and guess some values of
According to Redlich/Kwong equations, the molar volume of ethylene can be found using formula:
(d)
Answer to Problem 3.44P
From Soave/Redlich/Kwong equations, the molar volume of ethylene is:
Explanation of Solution
Given Information:
The Soave/Redlich/Kwong equation is
....(1)
Here
From table 3.1 in the example based on Soave/Redlich/Kwong equation given in book, the values used to calculate the terms in equation (1) are:
For Soave/Redlich/Kwong:
The values of reduced temperature and pressure are same as found in subpart (c), From reference subpart (c),
So,
For ethylene, put values in equation (1)
Using hit and trial method and compare both side of equation, the calculated value is:
Hence,
(e)
Interpretation:
The
Concept Introduction:
The Peng/Robinson equation is an iterative procedure. So, we will use hit and trial procedure and guess some values of
According to Peng/Robinson equation, the molar volume of ethylene can be found using formula:
(e)
Answer to Problem 3.44P
From Soave/Redlich/Kwong equations, the molar volume of ethylene is:
Explanation of Solution
Given Information:
The Peng/Robinson equation is
....(1)
Here
From table 3.1 in the example based on Peng/Robinson equation given in book, the values used to calculate the terms in equation (1) are:
For Peng/Robinson equation:
The values of reduced temperature and pressure are same as found in subpart (c), From reference subpart (c),
So,
For ethylene, put values in equation (1)
Using hit and trial method and compare both side of equation, the calculated value is:
Hence,
Want to see more full solutions like this?
Chapter 3 Solutions
EBK INTRODUCTION TO CHEMICAL ENGINEERIN
- 9.3. An ideal PD controller has the transfer function P Ke (TDs + 1) E An actual PD controller had the transfer function P = Ke E TDS +1 (TDIẞ)s +1 where ẞis a large constant in an industrial controller. If a unit-step change in error is introduced into a controller having the second transfer function, show that P(1) = Kc (1 + Ae˜¯BD) where A is a function of ẞwhich you are to determine. For ẞ=5 and K = 0.5, plot P(t) versus tl tp. As ẞ, show that the unit-step response approaches that for the ideal controller.arrow_forward9.1. A pneumatic PI temperature controller has an output pressure of 10 psig when the set point and process temperature coincide. The set point is suddenly increased by 10°F (i.e., a step change in error is introduced), and the following data are obtained: Time, s psig 0- 10 0+ 8 20 7 60 90 5 3.5 Determine the actual gain (psig per degree Fahrenheit) and the integral time.arrow_forward2. A unit-step change in error is introduced into a PID controller. If Ke TD = 0.5, plot the response of the controller P(t). = =10, 1, andarrow_forward
- A distribution of values is normal with a mean of 211 and a standard deviation of 50.4. Find the probability that a randomly selected value is between 59.8 and 155.6. P(59.8 X 155.6) = Enter your answer as a number accurate to 4 decimal places. Answers obtained using exact z-scores or z- scores rounded to 3 decimal places are accepted.arrow_forwardTopic: Production of propylene glycol from glycerol derived from palm oil. QUESTION:Estimate capital items, operating costs and economics of the plant. Finally, report the estimatedreturn.The Detailed Factorial Method with approximately 25% accuracy must be used for detailedeconomic evaluation.Plant lifetime is fixed at 15 years.1) Depreciation and TaxesCalculate the depreciation using a suitable method (e.g., straight-line, declining balance) andincorporate tax implications based on current tax laws applicable to chemical plants. Use following attached Process Flow Diagram as reference for this question.arrow_forwardTopic: Production of propylene glycol from glycerol derived from palm oil. QUESTION:Estimate capital items, operating costs and economics of the plant. Finally, report the estimatedreturn.The Detailed Factorial Method with approximately 25% accuracy must be used for detailedeconomic evaluation.Plant lifetime is fixed at 15 years.1) Revenue EstimationEstimate the annual revenue based on the production capacity, product selling price, and marketdemand. Groups should also consider potential market fluctuations. Use following attached Process Flow Diagram as reference for this question.arrow_forward
- Topic: Production of propylene glycol from glycerol derived from palm oil. QUESTION:Estimate capital items, operating costs and economics of the plant. Finally, report the estimatedreturn.The Detailed Factorial Method with approximately 25% accuracy must be used for detailedeconomic evaluation.Plant lifetime is fixed at 15 years.TASKS:1) Capital Cost EstimationProvide a detailed breakdown of the initial capital investment, including land, building,equipment, and installation costs. Include any assumptions made in the estimation. Use following attached Process Flow Diagram as reference for this question.arrow_forwardTopic: Production of propylene glycol from glycerol derived from palm oil. QUESTION:Estimate capital items, operating costs and economics of the plant. Finally, report the estimatedreturn.The Detailed Factorial Method with approximately 25% accuracy must be used for detailedeconomic evaluation.Plant lifetime is fixed at 15 years.1) Breakeven Year CalculationUsing the cash flow analysis, calculate the breakeven year when the cumulative cash inflowequals the initial investment. Groups should graphically represent the breakeven point. Use following attached Process Flow Diagram as reference for this question.arrow_forwardTopic: Production of propylene glycol from glycerol derived from palm oil. QUESTION:Estimate capital items, operating costs and economics of the plant. Finally, report the estimatedreturn.The Detailed Factorial Method with approximately 25% accuracy must be used for detailedeconomic evaluation.Plant lifetime is fixed at 15 years.1) Cash Flow AnalysisDevelop a projected cash flow statement for the first 10 years of plant operation, consideringall the costs and revenues. Include working capital, loans, and interest payments if applicable. Use following attached Process Flow Diagram as reference for this question.arrow_forward
- Topic: Production of propylene glycol from glycerol derived from palm oil.QUESTION:Estimate capital items, operating costs and economics of the plant. Finally, report the estimatedreturn.The Detailed Factorial Method with approximately 25% accuracy must be used for detailedeconomic evaluation.Plant lifetime is fixed at 15 years.1) Operational Cost AnalysisCalculate the yearly operational costs, including raw materials, labor, utilities, maintenance,and other recurring expenses. Provide a clear explanation of how these costs are derived. Use following attached Process Flow Diagram as reference for this question.arrow_forwardChemical Engineering Questionarrow_forwardA steam boiler or steam generator is a device used to produce steam by transferring heat to water. In our case, the combustion chamber is fueled with propane (C3H8) at a flowrate of 50.0 mol/h in an excess air of 50%. Assume that both propane and air are fed at 25ºC and the combustion gases leave the chamber at 200ºC. Pressure can be assumed to be atmospheric.* Determine: 1. The heat obtained assuming complete combustion. Compare the results using elements or compounds 2. The steam flowrate that could be generated if the heat is directed to obtain superheated steam at 2 bar and 160ºC from saturated liquid water at this pressure solvearrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The