![UNIVERSITY PHYSICS UCI PKG](https://www.bartleby.com/isbn_cover_images/9781323575208/9781323575208_largeCoverImage.gif)
UNIVERSITY PHYSICS UCI PKG
11th Edition
ISBN: 9781323575208
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 3.47P
In fighting forest fires, airplanes work in support of ground crews by dropping water on the fires. For practice, a pilot drops a canister of red dye, hoping to hit a target on the ground below. If the plane is flying in a horizontal path 90.0 m above the ground and has a speed of 64.0 m/s (143 mi/h), at what horizontal distance from the target should the pilot release the canister? Ignore air resistance.
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
No chatgpt pls
need help with the first part
A ball is thrown with an initial speed v, at an angle 6, with the horizontal. The horizontal range of the ball is R, and the ball reaches a maximum height R/4. In terms of R and g, find the following.
(a) the time interval during which the ball is in motion
2R
(b) the ball's speed at the peak of its path
v=
Rg 2
√ sin 26, V 3
(c) the initial vertical component of its velocity
Rg
sin ei
sin 20
(d) its initial speed
Rg
√ sin 20
×
(e) the angle 6, expressed in terms of arctan of a fraction.
1
(f) Suppose the ball is thrown at the same initial speed found in (d) but at the angle appropriate for reaching the greatest height that it can. Find this height.
hmax
R2
(g) Suppose the ball is thrown at the same initial speed but at the angle for greatest possible range. Find this maximum horizontal range.
Xmax
R√3
2
Chapter 3 Solutions
UNIVERSITY PHYSICS UCI PKG
Ch. 3.1 - In which of these situations would the average...Ch. 3.2 - A sled travels over the crest of a snow-covered...Ch. 3.3 - In Example 3.10, suppose the tranquilizer dart has...Ch. 3.4 - Suppose that the particle in Fig. 3.30 experiences...Ch. 3.5 - Suppose the nose of an airplane is pointed due...Ch. 3 - A simple pendulum (a mass swinging at the end of a...Ch. 3 - Redraw Fig. 3.11a if a is antiparallel to v1. Does...Ch. 3 - A projectile moves in a parabolic path without air...Ch. 3 - A book slides off a horizontal tabletop. As it...Ch. 3 - At the instant that you fire a bullet horizontally...
Ch. 3 - A package falls out of an airplane that is flying...Ch. 3 - Sketch the six graphs of the x- and y-components...Ch. 3 - If a jumping frog can give itself the same initial...Ch. 3 - A projectile is fired upward at an angle above...Ch. 3 - In uniform circular motion, what are the average...Ch. 3 - In uniform circular motion, how does the...Ch. 3 - In uniform circular motion, the acceleration is...Ch. 3 - Raindrops hitting the side windows of a car in...Ch. 3 - In a rainstorm with a strong wind, what determines...Ch. 3 - You are on the west bank of a river that is...Ch. 3 - A stone is thrown into the air at an angle above...Ch. 3 - A squirrel has x- and y-coordinates (1.1 m, 3.4 m)...Ch. 3 - A rhinoceros is at the origin of coordinates at...Ch. 3 - CALC A web page designer creates an animation in...Ch. 3 - CALC The position of a squirrel running in a park...Ch. 3 - A jet plane is flying at a constant altitude. At...Ch. 3 - A dog running in an open field has components of...Ch. 3 - CALC The coordinates of a bird flying in the...Ch. 3 - CALC A remote-controlled car is moving in a vacant...Ch. 3 - A physics book slides off a horizontal tabletop...Ch. 3 - A daring 510-N swimmer dives off a cliff with a...Ch. 3 - Crickets Chirpy and Milada jump from the top of a...Ch. 3 - A rookie quarterback throws a football with an...Ch. 3 - Leaping the River I. During a storm, a car...Ch. 3 - BIO The Champion Jumper of the Insect World. The...Ch. 3 - Inside a starship at rest on the earth, a ball...Ch. 3 - On level ground a shell is fired with an initial...Ch. 3 - A major leaguer hits a baseball so that it leaves...Ch. 3 - A shot putter releases the shot some distance...Ch. 3 - Win the Prize. In a carnival booth, you can win a...Ch. 3 - Firemen use a high-pressure hose to shoot a stream...Ch. 3 - A man stands on the roof of a 15.0-m-tall building...Ch. 3 - A 124-kg balloon carrying a 22-kg basket is...Ch. 3 - The earth has a radius of 6380 km and turns around...Ch. 3 - BIO Dizziness. Our balance is maintained, at least...Ch. 3 - BIO Pilot Blackout in a Power Dive. A jet plane...Ch. 3 - A model of a helicopter rotor has four blades,...Ch. 3 - A Ferris wheel with radius 14.0 m is turning about...Ch. 3 - The radius of the earths orbit around the sun...Ch. 3 - BIO Hypergravity. At its Ames Research Center,...Ch. 3 - A railroad flatcar is traveling to the right at a...Ch. 3 - A moving sidewalk in an airport terminal moves at...Ch. 3 - Two piers, A and B, are located on a river; B is...Ch. 3 - A canoe has a velocity of 0.40 m/s southeast...Ch. 3 - The nose of an ultralight plane is pointed due...Ch. 3 - Crossing the River I. A river flows due south with...Ch. 3 - Crossing the River II. (a) In which direction...Ch. 3 - BIO Bird Migration. Canada geese migrate...Ch. 3 - An airplane pilot wishes to fly due west. A wind...Ch. 3 - CALC A rocket is Tired at an angle from the top of...Ch. 3 - CALC A faulty model rocket moves in the xy-plane...Ch. 3 - CALC If r=bt2i+ct3jwhere b and c are positive...Ch. 3 - CALC The position of a dragonfly that is flying...Ch. 3 - CP A test rocket starting from rest at point A is...Ch. 3 - CALC A bird flies in the .vv-plane with a velocity...Ch. 3 - A sly 1.5-kg monkey and a jungle veterinarian with...Ch. 3 - BIO Spiraling Up. Birds of prey typically rise...Ch. 3 - In fighting forest fires, airplanes work in...Ch. 3 - A movie stuntwoman drops from a helicopter that is...Ch. 3 - An airplane is flying with a velocity of 90.0 m/s...Ch. 3 - A cannon, located 60.0 m from the base of a...Ch. 3 - CP CALC A toy rocket is launched with an initial...Ch. 3 - An important piece of landing equipment must be...Ch. 3 - The longest Home Run. According to Guinness World...Ch. 3 - An Errand of Mercy. An airplane is dropping bales...Ch. 3 - A baseball thrown at an angle of 60.0 above the...Ch. 3 - A water hose is used to fill a large cylindrical...Ch. 3 - A grasshopper leaps into the air from the edge of...Ch. 3 - Figure P3.58 3.58Kicking an Extra Point. In...Ch. 3 - Look Out! A snow-ball rolls off a barn roof that...Ch. 3 - A boy 12.0 m above the ground in a tree throws a...Ch. 3 - Suppose that the boy in Problem 3.60 throws the...Ch. 3 - A rock is thrown with a velocity V0, at an angle...Ch. 3 - Leaping the River II. A physics professor did...Ch. 3 - A 2.7-kg ball is thrown upward with an initial...Ch. 3 - A 76.0-kg rock is rolling horizontally at the top...Ch. 3 - Tossing Your Lunch. Henrietta is jogging on the...Ch. 3 - A cart carrying a vertical missile launcher moves...Ch. 3 - A firefighting crew uses a water cannon that...Ch. 3 - In the middle of the night you are standing a...Ch. 3 - CP Bang! A student sits atop a platform a distance...Ch. 3 - An airplane pilot sets a compass course due west...Ch. 3 - Raindrops. When a trains velocity is 12.0 m/s...Ch. 3 - In a World Cup soccer match, Juan is running due...Ch. 3 - An elevator is moving upward at a constant speed...Ch. 3 - Two soccer players, Mia and Alice, are running as...Ch. 3 - DATA A spring-gun projects a small rock from the...Ch. 3 - DATA You have constructed a hair-spray-powered...Ch. 3 - DATA You are a member of a geological team in...Ch. 3 - CALC A projectile thrown from a point P moves in...Ch. 3 - Two students are canoeing on a river. While...Ch. 3 - CP A rocket designed to place small payloads into...Ch. 3 - BIO BALLISTIC SEED DISPERSAL. Some plants disperse...Ch. 3 - BIO BALLISTIC SEED DISPERSAL. Some plants disperse...Ch. 3 - BIO BALLISTIC SEED DISPERSAL. Some plants disperse...Ch. 3 - A large number of seeds are observed, and their...
Additional Science Textbook Solutions
Find more solutions based on key concepts
How many significant figures are in the number 0.00620? a. 2 b. 3 c. 4 d. 5
Introductory Chemistry (6th Edition)
Q1. Which wavelength of light has the highest frequency?
a) 10 nm
b) 10 mm
c) 1 nm
d) 1 mm
Chemistry: A Molecular Approach (4th Edition)
Look at the relative positions of each pair of atoms listed here in the periodic table. How many core electrons...
Organic Chemistry (8th Edition)
Choose the best answer to each of the following. Explain your reasoning. Which of the following s not true abou...
Cosmic Perspective Fundamentals
11. A ball thrown horizontally at 25 m/s travels a horizontal distance of 50 m before hitting the ground. From...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Level 1: Knowledge/Comprehension 1. In the term trace element, the adjective trace means that (A) the element i...
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An outfielder throws a baseball to his catcher in an attempt to throw out a runner at home plate. The ball bounces once before reaching the catcher. Assume the angle at which the bounced ball leaves the ground is the same as the angle at which the outfielder threw it as shown in the figure, but that the ball's speed after the bounce is one-half of what it was before the bounce. 8 (a) Assuming the ball is always thrown with the same initial speed, at what angle & should the fielder throw the ball to make it go the same distance D with one bounce (blue path) as a ball thrown upward at 35.0° with no bounce (green path)? 24 (b) Determine the ratio of the time interval for the one-bounce throw to the flight time for the no-bounce throw. Cone-bounce no-bounce 0.940arrow_forwardA rocket is launched at an angle of 60.0° above the horizontal with an initial speed of 97 m/s. The rocket moves for 3.00 s along its initial line of motion with an acceleration of 28.0 m/s². At this time, its engines fail and the rocket proceeds to move as a projectile. (a) Find the maximum altitude reached by the rocket. 1445.46 Your response differs from the correct answer by more than 10%. Double check your calculations. m (b) Find its total time of flight. 36.16 x Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. s (c) Find its horizontal range. 1753.12 × Your response differs from the correct answer by more than 10%. Double check your calculations. marrow_forwardRace car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? Please answer parts a-B. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places. DONT FORGET TO DRAW VECTORS! ONLY USE BASIC FORMULAS TAUGHT IN PHYSICS. distance = speed * time.arrow_forward
- Race car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.…arrow_forwardHow is it that part a is connected to part b? I can't seem to solve either part and don't see the connection between the two.arrow_forwardHello, please help with inputing trial one into the equation, I just need a model for the first one so I can answer the rest. Also, does my data have the correct sigfig? Thanks!arrow_forward
- Find the current in the R₁ resistor in the drawing (V₁=16.0V, V2=23.0 V, V₂ = 16.0V, R₁ = 2005, R₂ = and R₂ = 2.705) 2.3052 VIT A www R www R₂ R₂ Vaarrow_forwardWhich of the following laws is true regarding tensile strength? • tensile strength T ①Fbreak = Wtfest Piece thickness rate (mm) ②T = test piece width rabe (mm) Fbreak break watarrow_forwardThe position of a squirrel running in a park is given by = [(0.280 m/s)t + (0.0360 m/s²)t²] + (0.0190 m/s³)ť³ĵj. What is v₂(t), the x-component of the velocity of the squirrel, as a function of time?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079137/9781305079137_smallCoverImage.gif)
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY