Concept explainers
(a)
Interpretation:
Convert 2600 mmHg to psi
Concept introduction:
One-unit system is usually used in science but less generally used in daily life, is called the 'SI' system or ‘International system’. The other system is the metric system widely used in United States.
Conversion tables can be used to directly convert values of these two systems.
From unit conversion tables we can get the following relationships.
1 mmHg is the pressure exerted by a 1 mm vertical column of mercury (Hg) and ‘psi’ is the pressure which results from a force of one pound apply to one square inch area.
Convert U.S. units to SI units as,
(b)
Interpretation:
Convert 275 ft H2 O to kPa.
Concept introduction:
One-unit system is usually used in science but less generally used in daily life, is called the 'SI' system or ‘International system’. The other system is the metric system widely used in United States.
Conversion tables can be used to directly convert values of these two systems.
From unit conversion tables we can get the following relationships.
One ft H2 O is defined as the pressure of one foot of water column.
Convert U.S. units to SI units as,
(c)
Interpretation:
Convert 3.00 atm to N/cm2
Concept introduction:
There are two systems of units in use in the world. One-unit system is commonly used in science but less usually used in daily life, is called the 'SI' system or ‘International system’. The other system is the metric system widely used in United States.
Conversion tables can be used to directly convert values of these two systems.
From unit conversion tables we can get the following relationships.
‘atm’ is called the atmospheric pressure,is the pressure within the atmosphere of Earth.
Convert U.S. units to SI units as,
(d)
Interpretation:
Convert 280 cm Hg to dyne / m2.
Concept introduction:
There are two systems of units in use in the world. One-unit system is commonly used in science but less usually used in daily life, is called the 'SI' system or ‘International system’. The other system is the metric system widely used in United States.
Conversion tables can be used to directly convert values of these two systems.
From unit conversion tables we can get the following relationships.
1 mmHg is the pressure exerted by a 1 mm vertical column of mercury (Hg).
The dyne is defined as the centimeter-gram-second unit of force.
Convert U.S. units to SI units as,
(e)
Interpretation:
Convert 20 cm Hg of vacuum to atm.
Concept introduction:
There are two systems of units in use in the world. One-unit system is commonly used in science but less usually used in daily life, is called the 'SI' system or ‘International system’. The other system is the metric system widely used in United States.
Conversion tables can be used to directly convert values of these two systems.
From unit conversion tables we can get the following relationships.
‘atm’ is called the atmospheric pressure,is the pressure within the atmosphere of Earth.
1 mmHg is the pressure exerted by a 1 mm vertical column of mercury (Hg).
The relationship between units,
Consider atmospheric pressure as 1 atm.
(f)
Interpretation:
Convert 25 psig to mm Hg.
Concept introduction:
There are two systems of units in use in the world. One-unit system is commonly used in science but less usually used in daily life, is called the 'SI' system or ‘International system’. The other system is the metric system widely used in United States.
Conversion tables can be used to directly convert values of these two systems.
From unit conversion tables we can get the following relationships.
1 mmHg is the pressure exerted by a 1 mm vertical column of mercury (Hg).
‘psig’ is pounds per square inch in gauge pressure.
Units can be converted as,
(g)
Interpretation:
Convert 25 psig to mm Hg (absolute).
Concept introduction:
There are two systems of units in use in the world. One-unit system is commonly used in science but less usually used in daily life, is called the 'SI' system or ‘International system’. The other system is the metric system widely used in United States.
Conversion tables can be used to directly convert values of these two systems.
From unit conversion tables we can get the following relationships.
1 mmHg is the pressure exerted by a 1 mm vertical column of mercury (Hg).
‘psig’ is pounds per square inch in gauge pressure.
Units can be converted as,
(h)
Interpretation:
Convert 325 mmHg to mmHg gauge.
Concept introduction:
Gauge pressure is defined as the zero reference pressure against ambient air pressure.
(i)
Interpretation:
Calculate 45 psi to cm of carbon tetrachloride.
Concept introduction:
There are two systems of units in use in the world. One-unit system is commonly used in science but less usually used in daily life, is called the 'SI' system or ‘International system’. The other system is the metric system widely used in United States.
Conversion tables can be used to directly convert values of these two systems.
From unit conversion tables we can get the following relationships.
Units can be converted as,
Height of the fluid column can be calculated as,
Height = Pressure / (Density. gravitational acceleration)
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 3 Solutions
ELEM.PRIN.OF CHEM.PROCESS-ACCESS
- The emission data in cps displayed in Table 1 is reported to two decimal places by the chemist. However, the instrument output is shown in Table 2. Table 2. Iron emission from ICP-AES Sample Blank Standard Emission, cps 579.503252562 9308340.13122 Unknown Sample 343.232365741 Did the chemist make the correct choice in how they choose to display the data up in Table 1? Choose the best explanation from the choices below. No. Since the instrument calculates 12 digits for all values, they should all be kept and not truncated. Doing so would eliminate significant information. No. Since the instrument calculates 5 decimal places for the standard, all of the values should be limited to the same number. The other decimal places are not significant for the blank and unknown sample. Yes. The way Saman made the standards was limited by the 250-mL volumetric flask. This glassware can report values to 2 decimal places, and this establishes our number of significant figures. Yes. Instrumental data…arrow_forwardSteps and explanation pleasearrow_forwardSteps and explanation to undertand concepts.arrow_forward
- Nonearrow_forward7. Draw a curved arrow mechanism for the following reaction. HO cat. HCI OH in dioxane with 4A molecular sievesarrow_forwardTry: Convert the given 3D perspective structure to Newman projection about C2 - C3 bond (C2 carbon in the front). Also, show Newman projection of other possible staggered conformers and circle the most stable conformation. Use the template shown. F H3C Br Harrow_forward
- Nonearrow_forward16. Consider the probability distribution p(x) = ax", 0 ≤ x ≤ 1 for a positive integer n. A. Derive an expression for the constant a, to normalize p(x). B. Compute the average (x) as a function of n. C. Compute σ2 = (x²) - (x)², the variance of x, as a function of n.arrow_forward451. Use the diffusion model from lecture that showed the likelihood of mixing occurring in a lattice model with eight lattice sites: Case Left Right A B C Permeable Barrier → and show that with 2V lattice sites on each side of the permeable barrier and a total of 2V white particles and 2V black particles, that perfect de-mixing (all one color on each side of the barrier) becomes increasingly unlikely as V increases.arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285869759/9781285869759_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580343/9781305580343_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133109655/9781133109655_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079250/9781305079250_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337398909/9781337398909_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)