ELEM PRIN CHEM PROCESS ETXT + WILEYPLUS
ELEM PRIN CHEM PROCESS ETXT + WILEYPLUS
4th Edition
ISBN: 9781119807988
Author: FELDER
Publisher: WILEY
bartleby

Concept explainers

Question
Book Icon
Chapter 3, Problem 3.40P
Interpretation Introduction

(a)

Interpretation:

The flowrate of the gas stream leaving the condenser should be calculated

Concept introduction:

It is given that a gas stream contains 18 mole% hexane (rest is nitrogen), this stream is passed through a condenser where some of the hexane is liquefied. The stream properties are given as,

The hexane mole fraction of gas stream leaving the condenser is 0.05 while the liquid condensate is recovered at 1.5 L/min.

Material balance at steady state is,

Material into the system = material out of the system

Interpretation Introduction

(b)

Interpretation:

The percentage of hexane recovered as the liquid should be calculated.

Concept introduction:

It is given that a gas stream contains 18 mole% hexane (rest is nitrogen), this stream is passed through a condenser where some of the hexane is liquefied. The stream properties are given as,

The hexane mole fraction of gas stream leaving the condenser is 0.05 while the liquid condensate is recovered at 1.5 L/min.

Material balance at steady state is,

Material into the system = material out of the system

Interpretation Introduction

(c)

Interpretation:

A process improvement to increase the recovery of hexane should be suggested.

Concept introduction:

It is given that a gas stream contains 18 mole% hexane (rest is nitrogen), this stream is passed through a condenser where some of the hexane is liquefied. The stream properties are given as,

The hexane mole fraction of gas stream leaving the condenser is 0.05 while the liquid condensate is recovered at 1.5 L/min.

Material balance at steady state is,

Material into the system = material out of the system

Blurred answer
Students have asked these similar questions
Q1/obtain the transfer function for the block diagram shown in the figure below: G4 G
(Population density parameters from sieve analysis data)2 One hundred fifty grams of crystals separated from one litre of suspension from an MSMPR crystallizer is subjected to screen analysis to get the following data: Tyler mesh Mass(g) 12/14 28.5 14/20 29.2 20/28 28/35 35/48 below 48 mesh 37.5 27 24.7 3.1 Mesh no./ screen opening(um) data: 12/1410 μm; 14/1190; 20/841; 28/595; 35/420; 48/297. The working volume of the crystallizer is 200 litres, and the rate of withdrawal of the slurry is 250 litre per hour. Given pc = 1400 kg/m³ and volume shape factor o, = 0.42, determine the crystal growth rate and the zero-size population density of the crystals. What is the rate of nucleation, Bº?
need help with this phase transformations practise question

Chapter 3 Solutions

ELEM PRIN CHEM PROCESS ETXT + WILEYPLUS

Knowledge Booster
Background pattern image
Chemical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The