Concept explainers
(a)
Interpretation:
The empirical formula and empirical formula mass for
Concept introduction:
An empirical formula gives the simplest whole number ratio of atoms of each element present in a compound.
Following are the steps to calculate the empirical formula mass of a compound.
Step 1: Determine the
Step 2: Divide the atom numbers of each element by a common factor to obtain the lowest whole number values. Write the lowest whole number value as the subscript of the element’s symbol to obtain the empirical formula for the compound.
Step 3: Add the molar mass of each element multiplied by its number of atoms present in the empirical formula to obtain the empirical formula mass for the compound.
(b)
Interpretation:
The empirical formula and empirical formula mass for
Concept introduction:
An empirical formula gives the simplest whole number ratio of atoms of each element present in a compound.
Following are the steps to calculate the empirical formula mass of a compound.
Step 1: Determine the number of atoms of each element from the given formula.
Step 2: Divide the atom numbers of each element by a common factor to obtain the lowest whole number values. Write the lowest whole number value as the subscript of the element’s symbol to obtain the empirical formula for the compound.
Step 3: Add the molar mass of each element multiplied by its number of atoms present in the empirical formula to obtain the empirical formula mass for the compound
(c)
Interpretation:
The empirical formula and empirical formula mass for
Concept introduction:
An empirical formula gives the simplest whole number ratio of atoms of each element present in a compound.
Following are the steps to calculate the empirical formula mass of a compound.
Step 1: Determine the number of atoms of each element from the given formula.
Step 2: Divide the atom numbers of each element by a common factor to obtain the lowest whole number values. Write the lowest whole number value as the subscript of the element’s symbol to obtain the empirical formula for the compound.
Step 3: Add the molar mass of each element multiplied by its number of atoms present in the empirical formula to obtain the empirical formula mass for the compound
(d)
Interpretation:
The empirical formula and empirical formula mass for
Concept introduction:
An empirical formula gives the simplest whole number ratio of atoms of each element present in a compound.
Following are the steps to calculate the empirical formula mass of a compound.
Step 1: Determine the number of atoms of each element from the given formula.
Step 2: Divide the atom numbers of each element by a common factor to obtain the lowest whole number values. Write the lowest whole number value as the subscript of the element’s symbol to obtain the empirical formula for the compound.
Step 3: Add the molar mass of each element multiplied by its number of atoms present in the empirical formula to obtain the empirical formula mass for the compound
(e)
Interpretation:
The empirical formula and empirical formula mass for
Concept introduction:
An empirical formula gives the simplest whole number ratio of atoms of each element present in a compound.
Following are the steps to calculate the empirical formula mass of a compound.
Step 1: Determine the number of atoms of each element from the given formula.
Step 2: Divide the atom numbers of each element by a common factor to obtain the lowest whole number values. Write the lowest whole number value as the subscript of the element’s symbol to obtain the empirical formula for the compound.
Step 3: Add the molar mass of each element multiplied by its number of atoms present in the empirical formula to obtain the empirical formula mass for the compound
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Loose Leaf for Chemistry: The Molecular Nature of Matter and Change
- The emission data in cps displayed in Table 1 is reported to two decimal places by the chemist. However, the instrument output is shown in Table 2. Table 2. Iron emission from ICP-AES Sample Blank Standard Emission, cps 579.503252562 9308340.13122 Unknown Sample 343.232365741 Did the chemist make the correct choice in how they choose to display the data up in Table 1? Choose the best explanation from the choices below. No. Since the instrument calculates 12 digits for all values, they should all be kept and not truncated. Doing so would eliminate significant information. No. Since the instrument calculates 5 decimal places for the standard, all of the values should be limited to the same number. The other decimal places are not significant for the blank and unknown sample. Yes. The way Saman made the standards was limited by the 250-mL volumetric flask. This glassware can report values to 2 decimal places, and this establishes our number of significant figures. Yes. Instrumental data…arrow_forwardSteps and explanation pleasearrow_forwardSteps and explanation to undertand concepts.arrow_forward
- Nonearrow_forward7. Draw a curved arrow mechanism for the following reaction. HO cat. HCI OH in dioxane with 4A molecular sievesarrow_forwardTry: Convert the given 3D perspective structure to Newman projection about C2 - C3 bond (C2 carbon in the front). Also, show Newman projection of other possible staggered conformers and circle the most stable conformation. Use the template shown. F H3C Br Harrow_forward
- Nonearrow_forward16. Consider the probability distribution p(x) = ax", 0 ≤ x ≤ 1 for a positive integer n. A. Derive an expression for the constant a, to normalize p(x). B. Compute the average (x) as a function of n. C. Compute σ2 = (x²) - (x)², the variance of x, as a function of n.arrow_forward451. Use the diffusion model from lecture that showed the likelihood of mixing occurring in a lattice model with eight lattice sites: Case Left Right A B C Permeable Barrier → and show that with 2V lattice sites on each side of the permeable barrier and a total of 2V white particles and 2V black particles, that perfect de-mixing (all one color on each side of the barrier) becomes increasingly unlikely as V increases.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY