Suppose that we are designing a cardiac pacemaker circuit The circuit is required to deliver pulses of 1-ms duration to the heart, which can be modeled as a 500- Ω resistance The peak amplitude of the pulses is required to be 5 V. However, the battery delivers only 2.5 V. Therefore, we decide to charge two equal- value capacitors an parallel from the 2.5-V battery and then switch the capacitors in series with the heart during the 1-ms pulse. What is the minimum value of the capacitances required so the output pulse amplitude remains between 4.9 V and 5.0 V throughout its 1-ms duration? If the pulses occur once every second, what is the average current drain from the battery). Use approximate calculations, assuming constant current during the output pulse. Find the ampere-hour rating of the battery so it lasts for five years.
Suppose that we are designing a cardiac pacemaker circuit The circuit is required to deliver pulses of 1-ms duration to the heart, which can be modeled as a 500- Ω resistance The peak amplitude of the pulses is required to be 5 V. However, the battery delivers only 2.5 V. Therefore, we decide to charge two equal- value capacitors an parallel from the 2.5-V battery and then switch the capacitors in series with the heart during the 1-ms pulse. What is the minimum value of the capacitances required so the output pulse amplitude remains between 4.9 V and 5.0 V throughout its 1-ms duration? If the pulses occur once every second, what is the average current drain from the battery). Use approximate calculations, assuming constant current during the output pulse. Find the ampere-hour rating of the battery so it lasts for five years.
Solution Summary: The author explains the value of minimum capacitance for the given output voltage change. The average current drawn from battery is I_avg=9.9mA and amper
Suppose that we are designing a cardiac pacemaker circuit The circuit is required to deliver pulses of 1-ms duration to the heart, which can be modeled as a 500-
Ω
resistance The peak amplitude of the pulses is required to be 5 V. However, the battery delivers only 2.5 V. Therefore, we decide to charge two equal- value capacitors an parallel from the 2.5-V battery and then switch the capacitors in series with the heart during the 1-ms pulse. What is the minimum value of the capacitances required so the output pulse amplitude remains between 4.9 V and 5.0 V throughout its 1-ms duration? If the pulses occur once every second, what is the average current drain from the battery). Use approximate calculations, assuming constant current during the output pulse. Find the ampere-hour rating of the battery so it lasts for five years.
I need handwritten solution to this, electrical engineering expert tutor s only,this is an assignment,I need 100% accuracy
5. Determine the CT convolutions for the signals below. Sketch the signal that flips and on same plot the
one that is not flipped. Do this for each overlap case. Clearly indicate all overlap cases and the integral
limits. Finally, using the left squiggly bracket notation, show the output for each case versus time.
(c) 4
x(t)
2
1
2(t) 4
x(t) 4
0123
et 20
x(t)
(4) 4
(a)
+(1)
24
T
0123
(b)
T
(f)
1
2-2
0123
(c)
(f)
0123
(d)
(1) A
t
1(8)
4,121
-101
3
(e)
Solve by pen and paper not using chatgpt or AI
Find the current io, and the voltage vo in the circuit in Figure 4. Answer: ἱο = 1.799 Α, νο = 17.99 V.
Chapter 3 Solutions
Mastering Engineering with Pearson eText -- Standalone Access Card -- for Electrical Engineering: Principles & Applications
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.