EBK FUNDAMENTALS OF THERMODYNAMICS, ENH
9th Edition
ISBN: 9781119321453
Author: Sonntag
Publisher: JOHN WILEY+SONS,INC.-CONSIGNMENT
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.230EP
To determine
(a)
The quality of R-140a at the initial state.
To determine
(b)
The total heat transfer during the process.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please explain well
E3.1. You must use the property data from the tables in the Appendix of your text to do this problem.
The figure below illustrates a pressure cooker with the pressure relief valve removed.
atm- 100 kPa
V= 2 liter
bottom 5%
is filled with
liquid water .
The pressure cooker has an internal volume of V = 2 liters. Because the relief valve is removed, the
contents are initially at atmospheric pressure, Patm = 100 kPa. The pressure cooker contains water in a
two-phase state. The bottom 5% of the volume of the vessel is filled with liquid water while the
remainder of the vessel contains water vapor.
a) Determine the initial temperature of the water in the cooker.
b) Determine the quality and specific volume of the water initially in the cooker.
c) Sketch by hand a T-v diagram and label the initial state of the water (state 1).
3.134 One kilogram of air in a piston-cylinder assembly
undergoes two processes in series from an initial state where
Pi = 0.5 MPa, T = 227°C:
Process 1-2: Constant-temperature expansion until the vol-
ume is twice the initial volume.
Process 2-3: Constant-volume heating until the pressure is
again 0.5 MPa.
Sketch the two processes in series on ap-v diagram. Assum-
ing ideal gas behavior, determine (a) the pressure at state 2.
in MPa, (b) the temperature at state 3, in °C, and for each
of the processes (c) the work and heat transfer, each in kJ.
Chapter 3 Solutions
EBK FUNDAMENTALS OF THERMODYNAMICS, ENH
Ch. 3 - What is 1cal in SI units and what is the name...Ch. 3 - A car engine is rated at 110kW . What is the power...Ch. 3 - Why do we write E or E2E1 , whereas we write 1Q2...Ch. 3 - If a process in a control mass increases energy...Ch. 3 - Prob. 3.5PCh. 3 - Prob. 3.6PCh. 3 - Prob. 3.7PCh. 3 - Prob. 3.8PCh. 3 - Prob. 3.9PCh. 3 - Prob. 3.10P
Ch. 3 - Prob. 3.11PCh. 3 - Prob. 3.12PCh. 3 - A thermopane window traps some gas between the two...Ch. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Prob. 3.16PCh. 3 - The electric bill is calculating usage in kWh....Ch. 3 - Prob. 3.18PCh. 3 - Prob. 3.19PCh. 3 - Prob. 3.20PCh. 3 - Prob. 3.21PCh. 3 - You heat a gas 10K at P=C . Which one in Table A.5...Ch. 3 - You mix 20C water with 50C water in an open...Ch. 3 - A piston motion moves a 25kg hammerhead vertically...Ch. 3 - A pump pushes 1000m3 of liquid water at 15C up to...Ch. 3 - Prob. 3.26PCh. 3 - A 1200kg car accelerates from zero to 100km/h over...Ch. 3 - A hydraulic hoist raises a 1750kg car 1.8m in an...Ch. 3 - Prob. 3.29PCh. 3 - A hydraulic cylinder of area 0.01m2 must push a...Ch. 3 - A hydraulic cylinder has a piston cross-sectional...Ch. 3 - Prob. 3.32PCh. 3 - A bulldozer pushes 800kg of din l00m with a force...Ch. 3 - Two hydraulic cylinders maintain a pressure of...Ch. 3 - A motor delivers 50hp on a drive shaft at 1800rpm...Ch. 3 - Prob. 3.36PCh. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - Prob. 3.39PCh. 3 - Prob. 3.40PCh. 3 - Heat transfer to a 1.5kg block of ice at -10C...Ch. 3 - A cylinder fitted with a frictionless piston...Ch. 3 - A piston cylinder contains 2kg of water at 20C...Ch. 3 - A nitrogen gas goes through a polytropic process...Ch. 3 - Helium gas expands from 125kPa,350K and 0.25m3 to...Ch. 3 - Prob. 3.46PCh. 3 - A balloon behaves so that the pressure is P=C2V1/3...Ch. 3 - A 15cm thick concrete wall, k=1.28W/mK , has a...Ch. 3 - The brake shoe and steel drum of a car...Ch. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - A power plant condenser (heat exchanger) transfers...Ch. 3 - Prob. 3.53PCh. 3 - A steel Pot, with conductivity of 15W/m and a 50mm...Ch. 3 - Prob. 3.55PCh. 3 - A wall surface on a house is 30C with an...Ch. 3 - A radiant heat lamp is a rod, tong and in diameter...Ch. 3 - A radiant beating lamp has a surface temperature...Ch. 3 - Determine the phase of the following substances...Ch. 3 - Find the phase and the missing properties of P, T,...Ch. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Find the missing property of P, T, y, u, h, and x...Ch. 3 - Find the missing properties for carbon dioxide at...Ch. 3 - Find the missing property of P, T, y, u, h, and x...Ch. 3 - Saturated liquid water at 20C is compressed to a...Ch. 3 - Prob. 3.67PCh. 3 - Consider a steel bottle as a CV. It contains...Ch. 3 - A piston cylinder contains water with quality 75...Ch. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - Saturated vapor R410A at 0C in a rigid tank is...Ch. 3 - A constant-pressure piston/cylinder assembly...Ch. 3 - A container is split in two equal volumes by a...Ch. 3 - Prob. 3.75PCh. 3 - A cylinder fined with a frictionless piston...Ch. 3 - A piston/cylinder contains 1.5kg of water at...Ch. 3 - Prob. 3.78PCh. 3 - Ammonia (0.5kg) in a piston cy1tnde at 200kPa,10C...Ch. 3 - Prob. 3.80PCh. 3 - A rigid 1kg steel tank holds 0.75kg ammonia at 70C...Ch. 3 - Prob. 3.82PCh. 3 - Prob. 3.83PCh. 3 - Prob. 3.84PCh. 3 - Prob. 3.85PCh. 3 - A rigid steel tank contains 0.5kgR410A at 0°C with...Ch. 3 - Redo the previous problem when you also consider...Ch. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Supetheated refrigerant R-134a at 20°C and 100 kPa...Ch. 3 - In a sink, 5 L of water at 70°C is combined with 1...Ch. 3 - Prob. 3.92PCh. 3 - Prob. 3.93PCh. 3 - Prob. 3.94PCh. 3 - A car with mass 1275 kg is driven at 60 km h when...Ch. 3 - A piston cylinder (0.5 kg steel altogether)...Ch. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Use the ideal gas air A.7 to evaluate the specific...Ch. 3 - Prob. 3.100PCh. 3 - Find the change in u for carbon dioxide between...Ch. 3 - Nitrogen at 300 K. 3 MPa is heated to 500 K Find...Ch. 3 - Prob. 3.103PCh. 3 - Prob. 3.104PCh. 3 - Find the change in enthalpy for carbon dioxide...Ch. 3 - Water at 20°C and 100 kPa is brought to l00 kPa...Ch. 3 - Prob. 3.107PCh. 3 - A rigid container has 2 kg of oxygen gas at l00...Ch. 3 - Prob. 3.109PCh. 3 - Prob. 3.110PCh. 3 - Prob. 3.111PCh. 3 - A cylinder with a piston restrained by a linear...Ch. 3 - A constant pressure container is filled with 1 kg...Ch. 3 - A spring-loaded piston cylinder contains 1.5kg of...Ch. 3 - Prob. 3.115PCh. 3 - Prob. 3.116PCh. 3 - Helium gas expands from 125 kPa, 350 K and 0.25m3...Ch. 3 - A piston cylinder device contains 0.1 kg of air at...Ch. 3 - A gasoline engine has a piston/cylinder with 0.1...Ch. 3 - Solve the previous problem using Table A.7.Ch. 3 - Prob. 3.121PCh. 3 - Prob. 3.122PCh. 3 - A piston/cylinder assembly has 1 kg of propane gas...Ch. 3 - A piston cylinder arrangement of initial volume...Ch. 3 - Prob. 3.125PCh. 3 - Prob. 3.126PCh. 3 - Air goes through a polytropic process with n=1.3...Ch. 3 - Saturated vapor R410A at 10°C of mass 0.6 kg is in...Ch. 3 - A helium gas heated at constant volume from 100...Ch. 3 - Prob. 3.130PCh. 3 - Prob. 3.131PCh. 3 - Prob. 3.132PCh. 3 - Prob. 3.133PCh. 3 - Prob. 3.134PCh. 3 - Prob. 3.135PCh. 3 - Prob. 3.136PCh. 3 - Prob. 3.137PCh. 3 - Prob. 3.138PCh. 3 - Prob. 3.139PCh. 3 - Prob. 3.140PCh. 3 - Prob. 3.141PCh. 3 - Prob. 3.142PCh. 3 - Prob. 3.143PCh. 3 - As fresh-poured concrete hardens, the chemical...Ch. 3 - A 1.2-kg pot of water at 20°C is put on a stove...Ch. 3 - A computer in a closed room of volume 200m3...Ch. 3 - A 500-W heater is used to melt 2 kg of solid ice...Ch. 3 - A 3-kg mass of nitrogen gas at 2000 K, V=C , cools...Ch. 3 - Prob. 3.149PCh. 3 - Electric power as volts times amperes (P=Vi) ....Ch. 3 - A copper wire of diameter 2 mm is 10m long and...Ch. 3 - Prob. 3.152PCh. 3 - A battery is well insulated while being charged by...Ch. 3 - Prob. 3.154PCh. 3 - Assume a balloon material with a constant surface...Ch. 3 - A soap bubble has a surface tension of =3104N/cm...Ch. 3 - According to Table 3.4 residential buildings in US...Ch. 3 - total energy use in the US from Table 3.4 for 2011...Ch. 3 - Prob. 3.159PCh. 3 - A wind turbine with 20m diameter rotors spins at...Ch. 3 - Prob. 3.161PCh. 3 - Prob. 3.162PCh. 3 - A house is being designed to use a thick concrete...Ch. 3 - A solar pond with 20°C salt water, Cp=3.8kJ/kg-K...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.167PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.169PCh. 3 - Prob. 3.170PCh. 3 - Prob. 3.171PCh. 3 - Prob. 3.172PCh. 3 - A piston cylinder has 0.1 kg water at x=0.5 ,...Ch. 3 - Prob. 3.174PCh. 3 - A piston/cylinder arrangement has the piston...Ch. 3 - Prob. 3.176PCh. 3 - Prob. 3.177PCh. 3 - Prob. 3.178PCh. 3 - Prob. 3.179PCh. 3 - Prob. 3.180PCh. 3 - Prob. 3.181PCh. 3 - Prob. 3.182PCh. 3 - A spherical balloon contains 2 kg of R-410A at 0°C...Ch. 3 - Prob. 3.184PCh. 3 - Prob. 3.185EPCh. 3 - Work as Fx has units of lbf ft. What is that in...Ch. 3 - Work in the expression in Eq. 3.18 or Eq. 3.22...Ch. 3 - Prob. 3.188EPCh. 3 - Prob. 3.189EPCh. 3 - You heat a gas 20 R at P=C . Which gas in Table...Ch. 3 - A piston motion moves a 50-lbm hammerhead...Ch. 3 - A pump pushes 35000ft3 of liquid water at 60 F up...Ch. 3 - Prob. 3.193EPCh. 3 - Prob. 3.194EPCh. 3 - Prob. 3.195EPCh. 3 - Prob. 3.196EPCh. 3 - Prob. 3.197EPCh. 3 - A car with tires of outer radius 12 in. drives...Ch. 3 - Prob. 3.199EPCh. 3 - Prob. 3.200EPCh. 3 - A nitrogen gas goes through apolytropic process...Ch. 3 - Prob. 3.202EPCh. 3 - Find the rate of conduction heat transfer per unit...Ch. 3 - The sun shines on a 1500-ft2 road surface so that...Ch. 3 - Prob. 3.205EPCh. 3 - Prob. 3.206EPCh. 3 - Prob. 3.207EPCh. 3 - Saturated vapor R-410A at 60 F in a rigid tank is...Ch. 3 - A containeris split in two equal volumes by a...Ch. 3 - Saturated vapor R-410A at 200 psia in a...Ch. 3 - A cylinder fitted with a frictionless piston...Ch. 3 - Prob. 3.212EPCh. 3 - Prob. 3.213EPCh. 3 - Prob. 3.214EPCh. 3 - Prob. 3.215EPCh. 3 - Prob. 3.216EPCh. 3 - Prob. 3.217EPCh. 3 - Prob. 3.218EPCh. 3 - Prob. 3.219EPCh. 3 - Prob. 3.220EPCh. 3 - Prob. 3.221EPCh. 3 - Prob. 3.222EPCh. 3 - A closed rigid container is filled with 3 lbm...Ch. 3 - Prob. 3.224EPCh. 3 - Prob. 3.225EPCh. 3 - Helium gas expands from 20 psia, 600 R, and 9ft3...Ch. 3 - Prob. 3.227EPCh. 3 - A cylinder fitted with a frictionless piston...Ch. 3 - Prob. 3.229EPCh. 3 - Prob. 3.230EPCh. 3 - Prob. 3.231EPCh. 3 - Prob. 3.232EPCh. 3 - A force of 300 lbf moves a truck at a speed of 40...Ch. 3 - Prob. 3.234EPCh. 3 - Water is in a piston/cylinder maintaining constant...Ch. 3 - A mass of 6 lbm nitrogen gas at 3600 R, V=C ,...Ch. 3 - Prob. 3.237EPCh. 3 - Prob. 3.238EPCh. 3 - Ammonia is contained in a sealed, rigid tank at 30...Ch. 3 - Prob. 3.240EP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1. A perfect gas has a value of R = 58.8 ft.lb/lb. R and k= 1.26. If 20 Btu are added to 5 lb of this gas at constant volume when the initial temperature is 90°F, find (a) T₂, (b) AH, (c) AS, (d) AU, and (e) work for a nonflow process.arrow_forward0.56 kg of water in a piston cylinder device as shown initially the water is at T, = 120 °C with volume V, = 36 L (State 1). Heat is then added such that all the water in the cylinder is saturated vapor and the piston just touched the spring without exerted any force on the spring (State 2). Then additional heat is added to the system such that the temperature is T, 600 °C and the pressure is P,= 400 kPa (State 3). 3 Po 3 1) Find the total work (from state 1 to state 3, in kW). O 147.73 2) O Not listed Qin 111.16 133.48 107 23 156.11 125.24 2) Find the total heat transfer for the process (from state 1 to state 3, in kW). 1424.6 O Not listed O 1486.0 O 1585.4arrow_forwardQ2: A pressure cooker contains 1.5 kg of saturated steam at 5 bar. Find the quantity of heat which must be rejected so as to reduce the quality to 60% dry. Determine the pressure and temperature of the steam at the new state.arrow_forward
- 3.45 A cylinder/piston arrangement contains water at 105°C, 85% quality with a volume of 1 L. The system is heated, causing the piston to rise and encounter a linear spring, as shown in Fig. P3.45. At this point the volume is 1.5 L, the piston diame- ter is 150 mm, and the spring constant is 100 N/mm. The heating continues, so the piston compresses the spring. What is the cylinder temperature when the pressure reaches 200 kPa? H₂Oarrow_forwardWater is heated in a closed container with rigid walls that is a perfect cube (1 m x 1 m x 1 m). The initial volume of the water (liquid + vapor) is 1 m'. The initial temperature of the water is 100 °C and it has a quality of 0.3. It is heated until it reaches a final pressure of 700 kPa. a. Sketch the process on the P V diagram. b. What is the work done by the water during this heating process in kJ? c. What is the final temperature of the water? d. What is the heat required in order for this process to occur in kJ? P Varrow_forwardQ3: You have an ideal gas in an insulated container. You compress it from a pressure of 40 × 105 Pa to 20 × 105 Pa, while increasing the volume from 10 to 20 m3. What is the work you done by the gas a- 10 J b- 300 J c- 500 J d- 880 Jarrow_forward
- Q3: A. The frictionless piston shown in Figure below has a mass of 20 kg. Heat is added until the temperature reaches 400°C. If the initial quality is 20 percent, find (a) the initial pressure, (b) the mass of water and (c) the work done on the piston. 30 mna Piston Water vapor 50 mm 썲⒤갓⒤ 100 mmarrow_forwardA piston-cylinder assembly contains 0.1 kg of air at 300 kPa pressure and 270C temperature. First at constant pressureBy adding heat, the volume is doubled from the initial volume. Then at constant temperature air is expanded up to 100 kPa pressure. According to this; 1-Show the whole event in the P-V diagram. 2-Status find work and heat shifts in changes.arrow_forwardQ3. We can determine the amount of heat transfer for any system undergoing any process using a thermodynamic analysis alone. Why do we need heat transfer as a distinct subject to deal about heat transfer?arrow_forward
- I need hand written solution only otherwise I will down votearrow_forwardA spring-loaded piston-cylinder device contains of m=1kg carbon dioxide. Initially, the spring has no force on the piston and P₁ = 500kPa, T₁ = 150K, V₁ = 0.1m³. Heat is transferred to the gas, causing the piston to rise and to compress the spring. At the state 2, T₁₂=900K, V₂=0.3m³. The gas is an ideal gas. (11) Calculate the heat transferred into the system in P1, V1, T1 P2, V2, T2 in kJ?arrow_forwardQ3. As shown in figure Q3, two tanks connected with valve are containing air with the given condition as shown in the figure. Now the valve is opened and the air in the two tanks are allowed to mix and reach to equilibrium condition with the surrounding temperature of 20°C. Considering the necessary assumptions, determine (a) the volume of tank B, (b) the pressure of both tanks after the valve is opened. (c) Can we use ideal gas low for saturated water steam at atmospheric pressure? Discuss the reason. (The gas constant of air is R = 0.287 kPa.m³/kg.K.) A В V = 1 m3 m = X m3 T= 17 °C T= 35 °C P = 450 kPa P = 300 kPa Figure Q3.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license